Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endocrine disruptors impair human sperm function

13.05.2014

Ultraviolet filters, preservatives, and plasticizers may be responsible for fertility problems

A plethora of endocrine-disrupting chemicals interfere with human sperm function in a way that may have a negative impact on fertilization. These are the findings of a German - Danish team of researchers from the Center of Advanced European Studies and Research in Bonn, Germany, and the University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark. The work, which is published in EMBO reports, suggests that endocrine disruptors may contribute to widespread fertility problems in the Western world in a way that hitherto has not been recognized.


Chemical fences: some substances in our everyday life may hamper penetration into the protective coat of the egg cell.

© EMBO Reports, 2014

Endocrine disruptors are present in food, textiles, drugs, household, and personal-care products such as plastic bottles, toys, and cosmetics. Proving the deleterious effects of endocrine disruptors on human beings has been difficult due to a lack of suitable experimental systems.

The European Commission is currently reviewing its policy on endocrine-disrupting chemicals. Last year, their plans caused a debate between endocrinologists and a group of toxicologists over how to regulate these chemicals. “Our study provides scientific evidence to assist forming international rules and practices,” said the leader of the study, Timo Strünker, from the Center of Advanced European Studies and Research in Bonn, Germany. 

“For the first time, we have shown a direct link between exposure to endocrine disrupting chemicals from industrial products and adverse effects on human sperm function,’’ said Niels E. Skakkebaek,  professor and leader of the Danish team.

Hundreds to thousands of chemicals can be rapidly tested for their potential to interfere with human sperm function using the bioassay developed by the researchers. In this initial study, about one hundred chemicals were tested. Around one third, including ultraviolet (UV) filters like 4-methylbenzylidene camphor (4-MBC) used in some sunscreens, the anti-bacterial agent Triclosan used in toothpaste, and di-n-butylphthalate (DnBP), showed adverse actions.

The scientists looked at the impact of these chemicals on the CatSper ion channel, a calcium channel controlling sperm motility. They showed that endocrine disruptors – applied at concentrations measured in body fluids – directly open CatSper and, thereby, increase calcium levels in sperm, change their swimming behaviour, and trigger the release of digestive enzymes that help sperm to break through the egg coat. Moreover, endocrine disruptors render sperm less sensitive for progesterone and prostaglandins – two important hormones released by cells surrounding the egg. Finally, the authors noted that in low-dose mixtures, the chemicals cooperate to elevate calcium levels in sperm.

Altogether, the study indicates that endocrine disruptors might disturb the precisely coordinated sequence of events underlying fertilization in several ways: the chemicals might evoke changes in swimming behaviour at the wrong time and wrong place, hinder navigation of sperm towards the egg, and hamper penetration into the protective egg coat.

Contact

Stefan Hartmann

Research Center caesar (center of advanced european studies and research), Bonn

Phone: +49 228 9656-292
Fax: +49 228 9656-9292

 

Timo Strünker

Research Center caesar (center of advanced european studies and research), Bonn

Phone: +49 228 9656-162
Fax: +49 228 9656-9162

 

Original publication

 
Schiffer, C., Müller, A., Egeberg, D. L., Alvarez, L., Brenker, C., Rehfeld, A., Frederiksen, H., Wäschle, B., Kaupp, U. B., Balbach, M., Wachten, D., Skakkebaek, N. E., Almstrup, K. & Strünker, T.
Directed action of endocrine disrupting chemicals on human sperm
EMBO Reports DOI 10.1002/embr.201438869 

Stefan Hartmann | Max-Planck-Gesellschaft

Further reports about: Endocrine adverse behaviour chemicals coat effects fertilization sperm swimming

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>