Early testing can predict the stroke patients who will develop upper limb spasticity

Spasticity and related complications are relatively common after stroke, leading to poorer joint range of motion, greater pain and less sensitivity in the arm one year later.

A study at Sahlgrenska Academy, University of Gothenburg, has found that the Fugl-Meyer assessment scale, a sensorimotor test performed during the first month after stroke, predicts with a fairly high degree of accuracy the patients who will develop spasticity within one year.

Poor sensorimotor function
A total of 117 Gothenburg area patients with an average age of 67 participated in the study. All of them had experienced poorer sensorimotor function in the arm three days after first-ever stroke. Upper limb sensorimotor function, spasticity and joint range of motion were monitored over the following year.

Arve Opheim, a researcher at Sahlgrenska Academy, says, “Our findings suggest that systematic examinations of sensorimotor function can identify patients at risk of developing spasticity so that they can obtain early treatment. Opportunities for minimizing pain, impaired function and other repercussions of spasticity will inevitably follow.”

The article Early Prediction of Long-term Upper Limb Spasticity after Stroke: Part of the SALGOT Study was published in Neurology on August 14.

A FEW FACTS ABOUT SPASTICITY
Spasticity refers to a motor disorder caused by damage to the central nervous system. The spasms, which may arise following a stroke, have the potential to occasion pain as well. Anywhere from 40% to 50% of stroke patients develop upper limb spasticity.

For additional information, feel free to contact:
Arve Opheim, researcher, Sahlgrenska Academy, University of Gothenburg
Phone +47-9800 5122
arve.opheim@neuro.gu.se

http://sahlgrenska.gu.se/english/research/news-article//early-testing-can-predic…

Media Contact

Calle Björned idw - Informationsdienst Wissenschaft

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors