Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering the emergence of neuronal diversity

30.01.2017

Researchers at the University of Geneva (UNIGE) have decoded the molecular diversity of inhibitory neurons during cortical development

The development of cerebral cortex plays a major role in the evolution of species and in particular for mankind. This is why scientists are studying the emergence of its cellular microstructure with high resolution methods. Neuroscientists at the University of Geneva (UNIGE), Switzerland, have analysed the diversity of cortical neurons -- more precisely inhibitory interneurons -- during the developmental period surrounding birth.


Inhibitory interneurons labelled with a fluorescent molecule (in green) are distributed in the cerebral cortex. These cells were individually isolated and single cell transcriptomics revealed markers (in white) specifically expressed in distinct sub-groups of interneurons.

Credit: © Dayerlab UNIGE.

They have discovered the emergence of three main sub-groups of interneurons by decoding the expression of cell-type specific genes as well as their exact, and often unexpected, location in the cortex. These results, which can be read in Nature Communications, will open the door to a more accurate understanding of the complex cell-type specific mechanisms underlying neuro-developmental disorders such as autism and schizophrenia. This should help researchers in discovering how psychiatric-related genetic disturbances impact the emergence of neuronal sub-types and how to design novel cell-type specific interventions.

Our cerebral cortex comprises two main types of neurons: excitatory neurons (80%), which generate cortical activity, and inhibitory interneurons (20%), which fine-tune this activity. Cortical brain function therefore depends on this neuronal diversity made up of numerous excitatory and inhibitory interneuron sub-groups.

The team of Alexandre Dayer, Professor in the Departments of Psychiatry and Fundamental Neurosciences at UNIGE's Faculty of Medicine, studied inhibitory neurons during the embryonic and early postnatal phase just after birth. In adults, over 20 interneuron sub-types have been identified. But when do they appear? When do they differentiate themselves?

"To discover this, we used transgenic mice, where specific types of inhibitory interneurons were labelled by fluorescent molecules. These fluorescent cells were studied during early development, just before the birth of the mouse and a few days after. Using a technique called fluorescence activated cell sorting, labelled neurons were isolated from the cerebral cortex and the genetic code of each of these neurons was analysed using single-cell transcriptomics," explains Alexandre Dayer. Thus, the molecular diversity of cell types is currently being dissected thanks to tools providing access to the gene expression landscape of individual cells at a given point in time during development.

Following gene sequencing of all these unique cells, bioinformatics tools allow scientists to identify distinct sub-groups of interneurons and to track the timing of their emergence during the early postnatal period. They also discovered that the location of these inhibitory interneuron sub-types varied depending on their genetic identity. "What is surprising is that one of the identified sub-groups was located in the cortical white matter, and not in the grey matter, as is usually the case," adds Professor Dayer. Indeed, the cortical white matter contains numerous fibres which transmit neuronal activity information from one cortical region to the other. The UNIGE neuroscientists, still need to discover what role this specific interneuron sub-group plays in the white matter and also how the large diversity of inhibitory interneurons appears over time.

A new database

A detailed analysis of the cell-type specific gene expression patterns belonging to these three main inhibitory interneuron sub-groups, is available to the scientific community online. This research is important when studying neuro-developmental disorders since cortical interneurons are a privileged target in psychiatric illnesses such as autism and schizophrenia. "Thanks to single-cell transcriptomics, we were able to map gene expression patterns for each cell at a given time during normal development. Hereafter, we can use this large reference database to determine how developmental disorders specifically affect individual cell types during the course of development," explains Alexandre Dayer. Cortical interneurons play a key role in the physio-pathology of psychiatric disorders. It is now necessary to determine when and how psychiatric-associated risk genes affect interneuron subtypes and to test therapies which could directly target specific cell types during developmental time windows. This is the direction that Professor Dayer's team will be taking in their future work within the framework of the National Research Centre - Synapsy.

Media Contact

Alexandre Dayer
alexandre.dayer@unige.ch
41-223-795-386

 @UNIGEnews

http://www.unige.ch 

Alexandre Dayer | EurekAlert!

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>