Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Correct connections are crucial

26.06.2017

Individualizing deep brain stimulation in patients with Parkinson's disease

Working with colleagues from Harvard Medical School and Würzburg, researchers from Charité - Universitätsmedizin Berlin have been examining the use of deep brain stimulation in the treatment of Parkison's disease in an attempt to optimize treatment effectiveness. Specifically, they have been looking at which brain regions need to be connected to the electrode used for deep brain stimulation.


The stimulation volume (red), i.e. the area of the brain immediately adjacent to the electrode, which becomes 'activated' when stimulation occurs. Image: Andreas Horn, Charité.

Image: Andreas Horn, Charité

The researchers found a way to use brain connectivity (i.e. connections in the brain) to predict the best possible relief of Parkinson's Disease symptoms. The results, describing an effective network profile of deep brain stimulation has been reported in the journal Annals of Neurology*.

Deep brain stimulation (DBS) is an established treatment for Parkinson's disease, usually leading to significant improvement in motor symptoms and quality of life. Symptoms such as movement restrictions, muscle rigidity, or tremor can be alleviated using the neurosurgical procedure which places small electrodes into deep structures of the brain. Whether optimal symptom relief is achieved depends on the correct placement of the electrode.

Characteristic connectivity patterns can be observed between the area surrounding the implant and other areas of the brain. "An optimally-positioned neurostimulator disposes of an optimal connectivity profile," explains Dr. Andreas Horn, a researcher at Charité's Department of Neurology and Experimental Neurology. "High treatment effectivity is associated with strong connections between the DBS electrode and specific frontal areas of the brain, such as the 'supplementary motor area'," says Dr. Horn. This relationship was not previously known.

The researchers were also able to show that an electrode's connectivity profile can be used to predict the extent to which treatment can alleviate a patient's movement restrictions. They did so by using a special electrode localization procedure which was developed at Charité in the laboratory of Prof. Dr. Andrea Kühn over a period of several years. The procedure continues to be based on exact brain connectivity maps which were developed in cooperation with Harvard Medical School.

The researchers used the MRI sequences of more than 1,000 test subjects to create a 'connectivity map' of the average human brain. Using both of these methods in combination, it is possible to produce connectivity profiles for any DBS electrode. Using basic principles from the field of machine learning, the researchers succeeded in producing and validating an optimal connectivity profile. Dr. Andreas Horn and his international research partners successfully ensured the high-precision placement of more than 90 DBS electrodes.

The researchers are planning to conduct further studies to develop a patient-specific, 'made-to-measure' method of brain stimulation. This may become feasible since it is possible to analyze a patient's specific connectivity profile using MRI training data even before he or she undergoes DBS electrode placement surgery. "It would be possible to determine the optimal location for stimulation even before the invasive part of the procedure starts," says Dr. Horn.

"We are now in the process of developing a complete procedure for connectivity-based deep brain stimulation, which will then need to undergo further validation studies." At some point in the distant future, this will make it possible to run a computer simulation prior to using the treatment in a specific patient.

###

* Andreas Horn, Martin Reich, Johannes Vorwerk, Ningfei Li, Gregor Wenzel, Qianqian Fang, Tanja Schmitz-Hübsch, Robert Nickl, Andreas Kupsch, Jens Volkmann, Andrea A. Kühn, Michael D. Fox. Connectivity predicts deep brain stimulation outcome in Parkinson's disease. Ann. Neurol. http://dx.doi.org/10.1002/ana.24974 (2017).

Contact:

Prof. Dr. Andrea Kühn
Department of Neurology and Experimental Neurology
Campus Charité Mitte
Tel: +49 30 450 560 203
Email: andreas.lueschow@charite.de

Links: Department of Neurology and Experimental Neurology https://neurologie.charite.de/forschung/arbeitsgruppen/bewegungsstoerungen_andrea_kuehn_axel_lipp/

Media Contact

Prof. Dr. Andrea Kühn
andreas.lueschow@charite.de
49-304-505-60203

http://www.charite.de 

Prof. Dr. Andrea Kühn | EurekAlert!

Further reports about: Harvard MRI Neurology deep brain stimulation electrode electrodes

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>