Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chronic Myeloid Leukemia: Why the Disease Progresses and Becomes Resistant to Drug Treatment

08.10.2013
Cancer researchers of the Max Delbrück Center (MDC) Berlin-Buch, have identified a molecular mechanism of chronic myeloid leukemia (CML) that causes the disease to progress and become resistant to drug treatment.

In a current study, Dr. Marina Scheller (now at the University Hospital Hamburg-Eppendorf) and Professor Achim Leutz report that these two processes in CML – disease progression and drug resistance – are directly associated with each other due to crosstalk between two cellular signaling pathways.

Their findings may lead to new strategies for developing combination treatments to halt the progression of the disease (Journal of Experimental Medicine, doi:10.1084/jem.20130706)*.

In CML, the white blood cells (leukocytes) multiply in an uncontrolled fashion. This is caused by a mutation in the DNA of a single blood stem cell. In this mutation, parts of chromosome 9 fuse with parts of chromosome 22. This discovery was made in 1960 and termed the “Philadelphia chromosome” after the place it was discovered in the U.S. The product of the Philadelphia chromosome is the BCR-ABL oncogene. The protein product of this BCR-ABL gene is a tyrosine kinase which is responsible for the excessive proliferation of the white blood cells and for triggering the progression of chronic myeloid leukemia.

About 15 years ago a novel drug (imatinib) was developed that can block the tyrosine kinase produced by the Philadelphia chromosome. With imatinib, which has been used since 2001, the disease can be suppressed in the majority of CML patients.

However, with increasing duration of the disease, leukemia cells can develop resistance to imatinib, and the drug treatment can lose its effectiveness in some of the patients. A consequence is the emergence of the so-called blast crisis in which the blood of the patients is flooded with immature white blood cells (blasts). This phase is life-threatening because drug treatment is usually unsuccessful. Many CML experts attribute the disease progression to changes in the so-called “leukemia stem cells”. Thus, to prevent disease relapse, researchers across the globe are seeking to decipher the disease mechanisms and to develop new treatment options to eliminate these highly malignant leukemia stem cells.

Two signaling pathways under scrutiny
The molecular mechanism of CML progression identified by the MDC cancer researchers may aid in targeting these complications directly. In their study, Dr. Scheller and Professor Leutz focused on two signaling pathways. One is the Wnt signaling pathway with its main component, the protein beta-catenin. Of the two pathways, Wnt has thus far been more extensively studied. Normally, it is critical for the regulation of embryonic cells. If this signaling pathway is erroneously activated, various types of cancer can arise. Wnt signaling also plays an important role in triggering a blast crisis in CML.

The cancer researchers also focused on the interferon signaling pathway, and particularly on the function of the interferon regulatory factor 8 (Irf8). Irf8 protects against infection and regulates the production of a specific type of white blood cells, the granulocytes. It is also known that Irf8 counteracts the BCR-ABL oncoprotein and may suppress the development of cancer.

Direct association
For several years scientists have known that in patients with CML, the tumor suppressor function of Irf8 is weakened, whereas beta-catenin and the Wnt signaling are active. Until now it was unclear why this is so. The MDC researchers were now able to show that both phenomena are directly related to each other and that the BCR-ABL oncogene product of the Philadelphia chromosome takes over the control of both pathways.

“The Philadelphia chromosome inhibits the tumor suppressor Ifr8. The suppression of Irf8 activity promotes the development of CML. But the suppression of Irf8 alone is not sufficient to trigger a blast crisis,” said Professor Leutz. “What is crucial is the activity of the beta-catenin protein. Beta-catenin is the amplifier of the misguided cell differentiation and cell division. Beta-catenin activation speeds up the uncontrolled growth of the white blood cells and prevents their maturation into functional granulocytes,” he added.

“We were able to demonstrate that the loss of the interferon regulatory factor 8 (Irf8) and the subsequent activation of the Wnt/beta-catenin signaling pathway lead to an aggressive behavior of the CML stem cell with the BCR-ABL gene,” the authors of the study summarized their findings. According to the cancer researchers, precisely these two changes in the leukemia stem cell, suppression of Ifr8 and activation of beta-catenin, are part of the fact that imatinib and related drugs lose their effectiveness and help the leukemia stem cells to survive.

Professor Leutz also pointed out that before the drug imatinib existed, CML was also treated with interferon-alpha (IFN-alpha). Interferon-alpha induces an increase in Ifr8 proteins and simultaneously an improved response to imatinib. “When there is a relapse,” he said, “it may be advantageous to additionally increase Irf8 and to suppress the deregulated beta-catenin.” In the laboratory, Professor Leutz and his team have already achieved this objective in mice.

*Crosstalk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance
Marina Scheller*1,2, Jörg Schönheit1, Karin Zimmermann3, Ulf Leser3, Frank Rosenbauer4 and Achim Leutz*1,2
1Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
2Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
3Institute for Computer Science, Humboldt-University of Berlin, Unter den Linden 6, 10099 Berlin, Germany.

4Institute of Molecular Tumor Biology - IMTB, Medical Faculty of the University of Muenster, Robert-Koch-Str. 43, 48149, Münster, Germany.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Strasse 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>