Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiologists identify mechanism that makes heart disease worse in diabetics

02.03.2012
UT Southwestern Medical Center cardiologists have uncovered how a specific protein's previously unsuspected role contributes to the deterioration of heart muscle in patients with diabetes. Investigators in the mouse study also have found a way to reverse the damage caused by this protein.

The new research, available online and published in the March 1 issue of the Journal of Clinical Investigation, was carried out in the laboratory of Dr. Joseph Hill, director of the Harry S. Moss Heart Center at UT Southwestern.

"If we can protect the heart of diabetic patients, it would be a significant breakthrough," said Dr. Hill, the study's senior author who also serves as chief of cardiology at the medical center. "These are fundamental research findings that can be applied to a patient's bedside."

Cardiovascular disease is the leading cause of illness and death in patients with diabetes, which affects more than 180 million people around the world, according to the American Heart Association. Diabetes puts additional stress on the heart – above and beyond that provoked by risk factors such as high blood pressure or coronary artery disease, Dr. Hill said.

"Elevated glucose and the insulin-resistant diabetic state are both toxic to the heart," he said.

Dr. Hill and his colleagues in this study were able to maintain heart function in mice exposed to a high fat diet by inactivating a protein called FoxO1. Previous investigations from Dr. Hill's laboratory demonstrated that FoxO proteins, a class of proteins that govern gene expression and regulate cell size, viability and metabolism, are tightly linked to the development of heart disease in mice with type 2 diabetes.

"If you eliminate FoxO1, the heart is protected from the stress of diabetes and continues to function normally," Dr. Hill said. "If we can prevent FoxO1 from being overactive, then there is a chance that we can protect the hearts of patients with diabetes."

Other UT Southwestern investigators participating in the study were Drs. Pavan Battiprolu, Zhao Wang and Myriam Iglewski, all postdoctoral researchers in internal medicine; Dr. Berdymammet Hojayev, postdoctoral researcher in pathology; Nan Jiang and John Shelton, senior research scientists in internal medicine; Dr. Xiang Luo, instructor in internal medicine; Dr. Robert Gerard, associate professor of internal medicine and molecular biology; Dr. Beverly Rothermel, assistant professor of internal medicine and molecular biology; Dr. Thomas Gillette, assistant professor of internal medicine; and Dr. Sergio Lavandero, visiting professor of internal medicine.

The research was supported by grants from the National Institutes of Health, the American Heart Association, the American Diabetes Association and the Jon Holden DeHaan Foundation.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht New method uses just a drop of blood to monitor lung cancer treatment
18.10.2018 | Osaka University

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>