Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting Cancer Cells to Swallow Poison

10.01.2012
Nanotechnology Researchers Develop New Strategy to Deliver Chemotherapy to Prostate Cancer Cells

Honing chemotherapy delivery to cancer cells is a challenge for many researchers. Getting the cancer cells to take the chemotherapy "bait" is a greater challenge. But perhaps such a challenge has not been met with greater success than by the nanotechnology research team of Omid Farokhzad, MD, Brigham and Women's Hospital (BWH) Department of Anesthesiology Perioperative and Pain Medicine and Research.

In their latest study with researchers from Massachusetts Institute of Technology (MIT) and Massachusetts General Hospital, the BWH team created a drug delivery system that is able to effectively deliver a tremendous amount of chemotherapeutic drugs to prostate cancer cells.

The study is electronically published in the January 3, 2012 issue of ACS Nano.

The process involved is akin to building and equipping a car with the finest features, adding a passenger (in this case the cancer drug), and sending it off to its destination (in this case the cancer cell).

To design the "vehicle," researchers used a selection strategy developed by Farokhzad's team that allowed them to essentially select for ligands (molecules that bind to the cell surface) that could specifically target prostate cancer cells. The researchers then attached nanoparticles containing chemotherapy, in this case docetaxel, to these hand-picked ligands.

To understand Farokhzad's selection strategy, one must understand ligand behavior. While most ligands mainly have the ability to bind to cells, the strategy of Farokhzad and his colleagues allowed them to select specific ligands that were not only able to bind to prostate cancer cells, but also possessed two other important features: 1) they were smart enough to distinguish between cancer and non-cancer cells and 2) they were designed to be swallowed by cancer cells.

"Most ligands are engulfed by cells, but not efficiently," said Farokhzad. "We designed one that is intended to be engulfed."

Moreover, the ability for a ligand to intentionally be engulfed by a cell is crucial in drug delivery since it enables a significant amount of drug to enter the cancer cell, as opposed to remaining outside on the cell surface. This is a more effective method for cancer therapy.

Another important aspect of this drug delivery design is that these ligand-nanoparticle components are able to interact with multiple cancer markers (antigens) on the cell surface. Unlike other drug delivery systems, this makes it versatile and potentially more broadly applicable.

According to the study's lead author, Zeyu Xiao, PhD, a researcher in the BWH Laboratory of Nanomedicine and Biomaterials, current strategies for targeting nanoparticles for cancer therapy rely on combining nanoparticles with ligands that can target well-known cancer markers. Such strategies can be difficult to execute since most cancer cells do not have identifiable cell surface markers to distinguish themselves from normal cells.

"In this study, we developed a unique strategy that enables the nanoparticles to specifically target and efficiently be engulfed into any desired types and sub-types of cancer cells, even if their cancer markers are unknown," said Xiao. "Our strategy simplifies the development process of targeted nanoparticles and broadens their applications in cancer therapy."

This research was supported by the National Institutes of Health, the David Koch-Prostate Cancer Foundation, and the USA Department of Defense Prostate Cancer Research Program.

Marjorie Montemayor-Quellenberg | EurekAlert!
Further information:
http://www.brighamandwomens.org/

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>