Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will my breast cancer spread? Discovery may predict probability of metastasis

24.10.2011
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered a new way to model human breast cancer that could lead to new tools for predicting which breast cancers will spread and new ways to test drugs that may stop its spread. Their results are published online today in the journal Nature Medicine.

To create this improved model for breast cancer studies, the researchers grafted tumor tissue from consenting breast cancer patients directly into mouse mammary glands, rather than the traditional approach, where the cancer cells are grown, or cultured, in the laboratory. They discovered that the grafts remained virtually identical to the original human breast cancer in structure, genetic makeup and behavior, unlike the methods that rely on cell cultures.

"The most surprising result was that the tumor grafts spread from the original site, or metastasized, just as they did in the human patients," said the study's principal investigator Alana Welm, Ph.D, assistant professor in the Department of Oncological Sciences and an HCI investigator . "For example, grafts of tumor tissue from patients whose cancer had spread to the lung also spread to the lungs of the mice that received them."

Most breast cancer deaths result from the disease spreading to other areas of the body such as the lymphatic system, lungs, liver, bones or brain.

In addition, researchers found that the successful grafts were nearly all from patients who developed the most aggressive forms of breast cancer and ultimately died of their disease.. This result reveals the modeling method's potential as a tool that, soon after a breast cancer diagnosis, could identify whether the tumor would be likely to spread, helping doctors select the best treatment approach for an individual patient's form of the disease.

"There is also the potential to develop similar models for other cancers using this method," says Welm. "We are already working on this with colon cancer tissues."

The study is a cooperative effort of HCI's Breast Disease Oriented Team, comprised of surgeons, medical and radiation oncologists, pathologists, and laboratory scientists. Other contributors included HCI's Comparative Oncology Resource, the Tissue Resource and Application Core, and ARUP Research Institute. The work was supported by funding from the U.S. Department of Defense Breast Cancer Research Program, the American Association for Cancer Research, the Breast Cancer Research Foundation, and Huntsman Cancer Foundation.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>