Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body clock controls how body burns fat

16.11.2010
UCI study opens new avenue for obesity and diabetes drug development
UC Irvine researchers have discovered that circadian rhythms — the internal body clock — regulate fat metabolism. This helps explain why people burn fat more efficiently at certain times of day and could lead to new pharmaceuticals for obesity, diabetes and energy-related illnesses.

The study was headed by Paolo Sassone-Corsi, Donald Bren Professor and chair of pharmacology. A leading expert on circadian rhythms, he discovered many of the key molecular switches governing these biological processes. He and his colleagues found that one of these, a protein called PER2, directly controls PPAR-gamma, a protein essential for lipid metabolism. Since circadian proteins are activated by 24-hour, light-dark patterns, PER2 turns on and off PPAR-gamma’s metabolic capabilities at regular intervals.

“What surprised us most, though, is that PER2 targets one specific amino acid on the surface of the PPAR-gamma molecule,” Sassone-Corsi said. “This kind of specificity is very rare in cell biology, which makes it exciting, because it presents us with a singular target for drug development.”

Daniele Piomelli, Louise Turner Arnold Chair in Neurosciences at UCI, and Todd Leff, associate professor of pathology at Wayne State University in Detroit, collaborated on the study, which appears this month in Cell Metabolism.

Twenty-four-hour circadian rhythms regulate fundamental biological and physiological processes in almost all organisms. They anticipate environmental changes and adapt certain bodily functions to the appropriate time of day. Disruption of these cycles can profoundly influence human health and has been linked to obesity, diabetes, insomnia, depression, heart disease and cancer.

Last year, Sassone-Corsi helped discover that proteins involved with circadian rhythms and metabolism are intrinsically linked and dependent upon each other to ensure that cells operate properly and remain healthy.

Rajesh H. Amin and James G. Granneman of Wayne State University and UCI’s Benedetto Grimaldi, Marina Maria Bellet, Sayako Katada, Giuseppe Astarita and Jun Hirayama contributed to the current study, supported by the National Institutes of Health.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s largest employer, UCI contributes an annual economic impact of $3.9 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.xuci.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>