Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arm in plaster changes brain in 16 days

17.01.2012
People who only use their left hand after breaking their right arm already exhibit significant anatomical changes in particular areas of the brain within 16 days.

Researchers from the University of Zurich have demonstrated that the thickness of the left brain areas is reduced while the areas on the right hand side that compensate for the injury increase in size. The fine motor skills of the compensating hand also improve considerably. The results of the study are significant for the treatment of strokes, in which the immobilization of an arm or a leg is central.

What happens in the brain of right-handed people if their dominant hand is immobile for two weeks? This is the question addressed in the latest study led by Professor Lutz Jäncke and the Trauma Surgery Department at Zurich University Hospital. For the study, ten right-handed people with broken upper right arms were examined. Because of the plaster or sling, the test people’s right hands were restricted to little or no movement for fourteen days.

Therefore they used their left hands for daily activities such as eating, brushing their teeth or writing. The participants were given two MRI brain scans: one 48 hours after injury and a second 16 days after the arm was immobilized. Based on the scans, the neuropsychologists analyzed the test people’s gray and white brain matter. They calculated the thickness of the cerebral cortex and the values of the corticospinal tract and measured the fine motor skills of the left, free-moving hand.

Rearrangement of the brain matter
“In a short space of time, the immobilization of the right hand changed the sensory and motor brain areas,” explains the author of the study, Nicki Langer. The gray and white brain matter of the motor areas in the right brain hemisphere that control the immobilized right hand decreases while the brain matter of the right motor areas that control the inferior left hand grows. “It is interesting that the fine motor skills of the left hand improved considerably during the 16 days the right hand was restricted,” adds neuropsychologist Lutz Jäncke. The improvement in motor performance correlates with the anatomical change: the better the fine motor skills of the left hand, the more brain substance there is in the right motor area. And: the better the fine motor skills of the left hand, the less brain matter there is in the left motor area.
Therapeutic benefits
The results of the study are interesting for the treatment of strokes. In a therapeutic approach, for instance, the undamaged arm can be immobilized to strengthen the affected arm and stimulate the corresponding brain area for new skills. “Our study shows that this kind of therapy has both positive and negative effects,” says Langer. “Our study also supports the current trauma surgery guidelines, which state that an injured arm or leg should only be immobilized for as short a period as possible, but as long as necessary,” concludes Langer.
Literature:
N. Langer, J. Hänggi, N.A. Müller, H.P. Simmen, and L. Jäncke. Effects of limb immobilization on brain plasticity. Neurology. January 17, 2012. doi: 10.1212/WNL.0b013e31823fcd9c
Contacts:
Nicki Langer
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 73 96
Email: n.langer@psychologie.uzh.ch
Professor Lutz Jäncke
Department of Psychology / Neuropsychology
University of Zurich
Tel. +41 44 635 74 00
Email: l.jaencke@psychologie.uzh.ch

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Health and Medicine:

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

nachricht 15 emerging technologies that could reduce global catastrophic biological risks
10.10.2018 | Johns Hopkins Center for Health Security

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>