Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers assess severity of prostate cancers using magnetic resonance imaging

11.08.2010
Developments could reduce biopsies, promote 'watchful waiting' for low-grade cancers

Rutgers researchers are developing methods that can accurately assess the severity of prostate cancer by analyzing magnetic resonance images and spectra of a patient's prostate gland. This may help physicians decide more confidently which patients need aggressive treatment and which are better served by "watchful waiting," and could even postpone or eliminate invasive biopsies in patients with low-grade tumors.

In a presentation next month at the world's premier medical image analysis conference, Rutgers biomedical engineers will report that they achieved over 90% accuracy in distinguishing low-grade from high-grade prostate cancers by running computer analyses of the images and spectra made on 19 patients in an early research study.

"The breakthrough we've had in the last few months is that we see image signatures that distinguish aggressive cancers from less aggressive ones," said Anant Madabhushi, associate professor of biomedical engineering at Rutgers and a member of The Cancer Institute of New Jersey (CINJ).

These studies build on earlier research at Rutgers and elsewhere to identify prostate cancer using powerful, high-resolution magnetic resonance imaging (MRI) technology.

"Now we're getting beyond merely identifying whether a person has cancer or not," he said. "This could lead to better patient management and cost savings."

Biomedical engineering graduate student Pallavi Tiwari will present research results and describe image analysis techniques at the Medical Image Computing and Computer Assisted Intervention (MICCAI) Conference in Bejing, China, on Sept. 22.

Tiwari and Madabhushi worked with John Kurhanewicz, professor of radiology and biomedical imaging at the University of California, San Francisco, to obtain prostate gland images from 19 patients who later had radical prostatectomies. They examined both traditional magnetic resonance (MR) images, which provide two-dimensional pictures of the gland's cellular structure, and MR spectroscopy, which maps concentrations of certain chemicals to locations in the prostate gland. Changes in concentrations of these chemical metabolites – choline, creatine and citrate – indicate the presence of cancer.

The researchers compared the MR images and spectra to digital images of the actual excised glands, which pathologists identified as having high-grade (aggressive) or low-grade (indolent) tumors using the established Gleason Grading System. They used pattern recognition techniques to recognize characteristics of areas in the MR images and spectra that corresponded to the cancerous tissue in the excised samples. This involved using computerized tools to align the MR views with digitized images of tissue slices, and to match the different resolutions of the images and spectra.

The objective is to "teach" the computer system to accurately and consistently recognize image patterns that correspond to various grades of cancerous tissue without having the tissue samples available to manually verify.

Madabhushi notes that the techniques will have to be evaluated on more people before they can be considered for clinical use. However, he is encouraged by the early results.

Each year, there are more than 27,000 deaths from prostate cancer in the United States and 190,000 new cases diagnosed. Most clinical diagnoses today are based on PSA levels in blood, physical examinations and needle biopsies. While one in six men might expect to get prostate cancer in their lifetimes, only one in 34 will die of it. Recent studies, including one at CINJ, suggest that men with low-risk cancers are receiving aggressive treatment. Improved diagnostic methods such as the Rutgers work could help patients with low-risk cancers and their physicians feel more confident with watchful waiting.

Also collaborating with the Rutgers researchers was Mark Rosen, associate professor of radiology at the Hospital of the University of Pennsylvania. Funding was provided by the Wallace H. Coulter Foundation, the National Cancer Institute, CINJ, the U.S. Department of Defense and Bioimagene, Inc.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>