Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers’ New Method May Sharpen Microscopic Images

22.03.2013
UT Dallas researchers are developing a new low-light imaging method that could improve a number of scientific applications, including the microscopic imaging of single molecules in cancer research.

Electrical engineering professor Dr. Raimund Ober and his team recently published their findings in the journal Nature Methods. In the journal, they describe a method which minimizes the deterioration of images that can occur with conventional imaging approaches.

“Any image you take of an object is translated by the camera into pixels with added electronic noise,” Ober said. “Any distortion of an image makes it harder to obtain accurate estimates of the quantities you’re interested in.”

This method could greatly enhance the accuracy with which quantities of interest, such as the location, size, and orientation of an object, are extracted from the acquired images.

Ober and his team tackled this problem by using the EMCCD camera (a standard low-light image detector) in a highly unconventional setting. Using this method, scientists can estimate quantities of interest from the image data with substantially higher accuracy than those made with conventional low-light imaging.

“We have figured out through rigorous theoretical developments that when you run an EMCCD camera in such a way that very few photons hit each of its pixels, the resulting image is minimally corrupted by the camera noise,” he said. “Our method is about using the EMCCD camera to its fullest potential, beyond what is commonly believed to be possible by the scientific imaging community.”

By increasing the magnification of the image to reduce the number of photons detected in each image pixel, they were able to significantly reduce the camera noise and considerably lessen the deteriorative effect of pixilation.

In fact, the team managed to attain particle localization accuracy that was twofold higher than those obtained with conventional EMCCD imaging.

Ober and his team applied UAIM (Ultrahigh Accuracy Imaging Modality) to the live-cell tracking of a standard protein marker for breast cancer. By being able to accurately follow the movement of the marker, valuable insights on the biology of breast cancer could be gained.

“The tracking of individual proteins represents an important way to study cancer and other diseases at the molecular level,” Ober said. “The applications of UAIM for diagnostics and research are promising.”

The research team included Jerry Chao and Sripad Ram, post-doctoral researchers at UT Dallas, and Dr. Sally Ward, professor of immunology at UT Southwestern Medical Center.

The work was funded by the National Institutes of Health and the Cancer Prevention Research Institute of Texas.

Media Contact: Katherine Morales, 972-883-4321, kxm109320@utdallas.edu
or the Office of Media Relations, 972-883-2155, newscenter@utdallas.edu

Katherine Morales | EurekAlert!
Further information:
http://www.utdallas.edu

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>