Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Reveals Insights into Lung Disease

11.12.2007
Doctors at the Universities of Leicester and Nottingham are collaborating to use a magnetic resonance technique to image and quantify the air spaces inside the lungs. The results of their research may lead to a link between childhood disease and later degenerative lung disease (COPD).

There are relatively few centres around the world which have access to this particular magnetic resonance technique, which is based in Nottingham University. Researchers at the University of Leicester have recruited cohorts of some 10,000 children – the largest to focus on respiratory illnesses in childhood. The two groups have combined forces, with a joint grant from the Wellcome Trust.

The method relies on the fact that certain noble gases (which are relatively rare in the atmosphere and are very un-reactive), when hyper-polarized in a very strong laser beam, can be detected by magnetic resonance methods.

Tests involve individuals inhaling a very small quantity (in this case 10ml or two teaspoons) of the hyper-polarized helium-3 gas. This technique provides the key to unlock a whole new area of research in the field of lung development.

This is quite different from the magnetic resonance scans are now commonplace in British hospitals. However, all magnetic resonance techniques function without the use of radioactive substances or ionising radiation (as is the case with x-ray techniques). They are thus very safe, and have no known side effects and are ideal for research into childhood illness.

Professor Mike Silverman, of the University of Leicester’s Department of Infection, Immunity & Inflammation, commented: “Leicester’s role has been to provide the clinical and developmental research questions and a population of children and young people on whom a lot of data has been collected since early infancy. Leicester has also provided a group of researchers with experience of paediatric projects, and of lung function measurements in infants and children of all ages.

“This combined with the technical expertise of the group in the Department of Physics & Astronomy at Nottingham University led by Professor John Owers-Bradley, has created a very powerful partnership.”

The pulmonary alveolus is the most peripheral structure within the air spaces of the lung, in which the gases carbon dioxide and oxygen move between the air and the blood. There are said to be about 500 million alveoli in the adult lung, and they have a combined surface area equivalent to about one tennis court. All the alveoli are formed by the age of 3 years, so early illnesses and exposures may leave children at risk of later lung disease.

COPD is chronic obstructive pulmonary disease, commonly known as chronic bronchitis and emphysema. This is a degenerative lung condition, enhanced by smoking, in adults beyond middle age.

Professor Silverman added: “The outcome that we are seeking is evidence that in young people and teenagers, there are differences in alveolar structure and number in association with disorders of fetal prenatal development and early childhood disease.

“We anticipate that there is an additional impact of teenage smoking on alveolar structure and function. If these observations are confirmed, they would provide for the first time evidence of impaired alveolar (as opposed to airway) development in childhood.

“This could be the link between childhood disease and later degenerative lung disease (COPD). We will then seek the specific factors (genetic or environmental) which lead to defective lung development, and will propose further research to ameliorate these factors.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>