Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Enhances and Expands “Homing”and Therapeutic Potential of Cord Blood Stem Cells in Bone Marrow Transplants

10.06.2008
Rush University Medical Center researchers present pre-clinical data at international symposium June 6-7

A CD26 Inhibitor increases the efficiency and responsiveness of umbilical cord blood for bone marrow transplants and may improve care for blood cancer patients according to research from Rush University Medical Center being presented at the 6th Annual International Umbilical Cord Blood Transplantation Symposium, June 6-7 in Los Angeles.

Kent W. Christopherson II, PhD, assistant professor of medicine and researcher in the Sections of Hematology and Stem Cell Transplantation at Rush, is researching a CD26 Inhibitor, a small molecule enzyme inhibitor that enhances directional homing of stem cells to the bone marrow by increasing the responsiveness of donor stem cells to a natural homing signal. Homing is the process by which the donor stem cells find their way to the bone marrow. It is the first and essential step in stem cell transplantation.

Cord blood is increasingly being used by transplant centers as an alternative source of stem cells for the treatment of blood cancers, including myeloma, lymphoma and leukemia. The cells, which are collected from the umbilical cord after the baby is delivered and separated from the cord, are most commonly used for bone marrow transplantation when a donor from a patient’s family or an unrelated donor does not produce an appropriate bone marrow match.

The current drawback to the usage of cord blood cells is that due to the limited volume and cell number, there are generally only enough cells available from a single cord blood collection for children or very small adults. Cord blood cells also usually take longer to engraft, leaving the patient at a high risk for infection longer than donor matched transplanted marrow or peripheral blood stem cells. The goal of Christopherson’s research is to increase the transplant efficiency of umbilical cord blood and ultimately make transplant safer and available to all patients who require this treatment.

In his discussion on “Strategies to Improve Homing,” Christopherson states that results from his and other laboratories suggest “the beneficial effects of the CD26 Inhibitor usage and the potential of this technology to change hematopoietic stem cell transplantation.”

Christopherson will co-chair the session and review some of his Leukemia & Lymphoma Society funded work at the symposium in a session entitled “Basic Science and Clinical Studies Addressing Obstacles to Successful Umbilical Cord Blood Transplants (UCBT)”. He will be joined by Dr. Patrick Zweidler-McKay of the University if Texas MD Anderson Cancer Center. Zweidler-McKay will discuss his team’s work in the same session on Engraftin™, a human recombinant enzyme technology that increases the efficiency of engraftment and reduces graft failure in transplantation of cord blood derived stem cells.

Research results in animal models by Christopherson and Zweider-McKay show that both Engraftin and CD26 Inhibitor can enhance homing and rate of engraftment, which will result in reduced patient morbidity and mortality in bone marrow transplants. American Stem Cell, Inc., the developer of both technologies, plans to begin human trials in the next few months.

There are over 250,000 new cancer patients per year who require or would benefit from stem cell transplantation and as many as 20% are unable to find a blood or marrow match.

Kim Waterman | EurekAlert!
Further information:
http://ww.rush.edu

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>