Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microelectronics: Automating cancer detection

15.08.2013
A sensor developed at A*STAR can detect bladder cancer cells and track tumor progression

Microelectronic engineers in Singapore have developed and tested sensor technology that can detect and measure a chemical signature of bladder cancer. The light-based sensor could eventually be used for the early diagnosis and subsequent tracking of the progression and treatment of many different tumors, according to Yong Shin at the A*STAR Institute of Microelectronics, who led the research.

After further testing of the technology, Shin and co-workers are planning to develop a lab-on-a-chip device incorporating the sensor that can process fluid samples within about five minutes.

Genes that suppress tumors can be deactivated by the attachment of a methyl group to a specific DNA sequence — cytosine next to guanine — in their promoter region. The methyl group prevents the gene from being used as a template for protein synthesis and reduces the capacity of the cell to control its own proliferation.

Several well-established chemical methods exist for detecting such DNA methylation, but they are expensive, time-consuming and dependent on laboratory expertise. Shin and co-workers therefore investigated direct physical methods as an alternative. They focused particularly on silicon micro-ring resonators that amplify light at specific resonant frequencies. The resonators developed by the researchers are very sensitive detectors of a shift in light frequency, including the shift that occurs when a methyl group is attached or detached to DNA.

Shin and co-workers tested the capacity of silicon micro-ring resonators to discriminate between methylated and unmethylated forms of genes known to trigger cancer in bladder cells. They fashioned separate DNA probes to capture one or other form when they passed a solution of the genes, amplified by the polymerase chain reaction, over a silicon chip to which the probes were attached. The resonators clearly distinguished between the forms within five minutes. Moreover, the method allowed the team to quantify the density of methylation, which means the technique should be able to track changes in patterns of methylation.

“Our sensors could be widely useful for DNA methylation detection specifically and rapidly in the field,” says Shin.

He also notes that the team has published several research papers on using silicon micro-ring resonators. “Among the techniques we have published is a novel technique that can be integrated with the methylation-specific sensor to amplify the methylated DNA from low amounts of DNA,” he explains. “So, we are now trying to make a single microfluidic-based chip system that integrates several techniques, such as DNA extraction, conversion, amplification and detection.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Shin, Y., Perera, A. P., Kee, J. S., Song, J., Fang, Q. et al. Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sensors and Actuators B: Chemical 177, 404–411 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6716
http://www.researchsea.com

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>