Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microelectronics: Automating cancer detection

15.08.2013
A sensor developed at A*STAR can detect bladder cancer cells and track tumor progression

Microelectronic engineers in Singapore have developed and tested sensor technology that can detect and measure a chemical signature of bladder cancer. The light-based sensor could eventually be used for the early diagnosis and subsequent tracking of the progression and treatment of many different tumors, according to Yong Shin at the A*STAR Institute of Microelectronics, who led the research.

After further testing of the technology, Shin and co-workers are planning to develop a lab-on-a-chip device incorporating the sensor that can process fluid samples within about five minutes.

Genes that suppress tumors can be deactivated by the attachment of a methyl group to a specific DNA sequence — cytosine next to guanine — in their promoter region. The methyl group prevents the gene from being used as a template for protein synthesis and reduces the capacity of the cell to control its own proliferation.

Several well-established chemical methods exist for detecting such DNA methylation, but they are expensive, time-consuming and dependent on laboratory expertise. Shin and co-workers therefore investigated direct physical methods as an alternative. They focused particularly on silicon micro-ring resonators that amplify light at specific resonant frequencies. The resonators developed by the researchers are very sensitive detectors of a shift in light frequency, including the shift that occurs when a methyl group is attached or detached to DNA.

Shin and co-workers tested the capacity of silicon micro-ring resonators to discriminate between methylated and unmethylated forms of genes known to trigger cancer in bladder cells. They fashioned separate DNA probes to capture one or other form when they passed a solution of the genes, amplified by the polymerase chain reaction, over a silicon chip to which the probes were attached. The resonators clearly distinguished between the forms within five minutes. Moreover, the method allowed the team to quantify the density of methylation, which means the technique should be able to track changes in patterns of methylation.

“Our sensors could be widely useful for DNA methylation detection specifically and rapidly in the field,” says Shin.

He also notes that the team has published several research papers on using silicon micro-ring resonators. “Among the techniques we have published is a novel technique that can be integrated with the methylation-specific sensor to amplify the methylated DNA from low amounts of DNA,” he explains. “So, we are now trying to make a single microfluidic-based chip system that integrates several techniques, such as DNA extraction, conversion, amplification and detection.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Shin, Y., Perera, A. P., Kee, J. S., Song, J., Fang, Q. et al. Label-free methylation specific sensor based on silicon microring resonators for detection and quantification of DNA methylation biomarkers in bladder cancer. Sensors and Actuators B: Chemical 177, 404–411 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6716
http://www.researchsea.com

More articles from Medical Engineering:

nachricht NIH scientists combine technologies to view the retina in unprecedented detail
14.11.2018 | NIH/National Eye Institute

nachricht Medica 2018: New software for a more efficient planning of minimally invasive surgery
06.11.2018 | Technische Universität Kaiserslautern

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>