Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lights, Chemistry, Action: New Method for Mapping Brain Activity

12.04.2013
PET scans monitor brain circuits activated by light, opening new window to brain diseases

Building on their history of innovative brain-imaging techniques, scientists at the U.S. Department of Energy's Brookhaven National Laboratory and collaborators have developed a new way to use light and chemistry to map brain activity in fully-awake, moving animals.

The technique employs light-activated proteins to stimulate particular brain cells and positron emission tomography (PET) scans to trace the effects of that site-specific stimulation throughout the entire brain. As described in a paper published online today in the Journal of Neuroscience, the method will allow researchers to map exactly which downstream neurological pathways are activated or deactivated by stimulation of targeted brain regions, and how that brain activity correlates with particular behaviors and/or disease conditions.

"This technique gives us a new way to look at the function of specific brain cells and map which brain circuits are active in a wide range of neuropsychiatric diseases - from depression to Parkinson's disease, neurodegenerative disorders, and drug addiction - and also to monitor the effects of various treatments," said the paper's lead author, Panayotis (Peter) Thanos, a neuroscientist and director of the Behavioral Neuropharmacology and Neuroimaging Section - part of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) Laboratory of Neuroimaging at Brookhaven Lab - and a professor at Stony Brook University. "Because the animals are awake and able to move during stimulation, we can also directly study how their behavior correlates with brain activity," he said.

The new brain-mapping method combines very recent advances in a field known as "optogenetics" - the use of optics (light activation) and genetics (genetically coded light-sensitive proteins) to control the activity of individual neurons, or nerve cells - and Brookhaven's historical development of radioactively labeled chemical tracers to track biological activity with PET scanners.

The scientists used a modified virus to deliver a light-sensitive protein to particular brain cells in rats. Genetic coding can deliver the protein to specifically targeted brain-cell receptors. Then, after stimulating those proteins with light shone through an optical fiber inserted through a tiny tube called a cannula, they monitored overall brain activity using a radiotracer known as ^18FDG, which serves as a stand-in for glucose, the body's (and brain's) main source of energy.

The unique chemistry of ^18FDG causes it to be temporarily "trapped" inside cells that are hungry for glucose - those activated by the brain stimulation - and remain there long enough for the detectors of a PET scanner to pick up the radioactive signal, even after the animals are anesthetized to ensure they stay still for scanning. But because the animals were awake and moving when the tracer was injected and the brain cells were being stimulated, the scans reveal what parts of the brain were activated (or deactivated) under those conditions, giving scientists important information about how those brain circuits function and correlate with the animals' behaviors.

"In this paper, we wanted to stimulate the nucleus accumbens, a key part of the brain involved in reward that is very important to understanding drug addiction," Thanos said. "We wanted to activate the cells in that area and see which brain circuits were activated and deactivated in response."

The scientists used the technique to trace activation and deactivation in number of key pathways, and confirmed their results with other analysis techniques.

The method can reveal even more precise effects.

"If we want to know more about the role played by specific types of receptors - say the dopamine D1 or D2 receptors involved in processing reward - we could tailor the light-sensitive protein probe to specifically stimulate one or the other to tease out those effects," he said.

Another important aspect is that the technique does not require the scientists to identify in advance the regions of the brain they want to investigate, but instead provides candidate brain regions involved anywhere in the brain - even regions not well understood.

"We look at the whole brain," Thanos said. "We take the PET images and co-register them with anatomical maps produced with magnetic resonance imaging (MRI), and use statistical techniques to do comparisons voxel by voxel. That allows us to identify which areas are more or less activated under the conditions we are exploring without any prior bias about what regions should be showing effects."

After they see a statistically significant effect, they use the MRI maps to identify the locations of those particular voxels to see what brain regions they are in.

"This opens it up to seeing an effect in any region in the brain - even parts where you would not expect or think to look - which could be a key to new discoveries," he said.

This work was supported by the intramural program at NIAAA as well as grants AA11034, AA07574, AA07611. Additional co-authors include: Lisa Robison and Ronald Kim, Stony Brook University; Eric J. Nestler and Michael Michaelides, Mount Sinai School of Medicine; Mary-Kay Lobo, University of Maryland School of Medicine; and Nora D. Volkow, NIAAA.

Scientific paper: "Mapping Brain Metabolic Connectivity in Awake Rats with ?PET and Optogenetic Stimulation"

An electronic version of this news release is available online

Media contacts: Karen McNulty Walsh, 631 344-8350, kmcnulty@bnl.gov or Peter A. Genzer, 631 344-3174, genzer@bnl.gov

***
Sidebar: Brookhaven and 18FDG
^18FDG is chemistry shorthand for 2-deoxy-2-[^18F]fluoro-D-glucose. It was originally synthesized at Brookhaven Lab in 1976, and is now the world's most widely used radiotracer for cancer diagnosis. In ^18FDG, a radioactive form of fluorine (^18F) takes the place of a hydrogen atom in a molecule that is very similar to glucose. When injected into the bloodstream, ^18FDG travels to wherever glucose (energy) is being used. As the radioactive ^18F atoms decay, they emit particles called positrons, identical to electrons but opposite in charge. When positrons and ordinary electrons interact, they produce back-to-back gamma rays. These signals, picked up by the circular array of detectors of a positron emission tomography (PET) scanner, can be used to identify the position of the original ^18F atom and create pictures of its location within the body. By tracking the tracer over time, scientists can monitor site-specific metabolic activity under a variety of conditions. MORE: http://www.bnl.gov/newsroom/news.php?a=11461
***
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (http://www.bnl.gov/newsroom) or follow Brookhaven Lab on Twitter (http://twitter.com/BrookhavenLab).

Karen McNulty Walsh | Newswise
Further information:
http://www.bnl.gov

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>