Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The journey into the self becomes reality

30.04.2010
Siemens Healthcare and Olympus Medical Systems Corporation announce collaborative development of advanced magnetically guided capsule endoscope system for intragastric observation

Siemens Healthcare and Olympus Medical Systems Corporation are collaborating on the development of a technology for a magnetically guided capsule endoscope (MGCE) system. This innovative technology is intended to allow stomach examinations to be performed easily and comfortably by having the patient simply swallow an endoscope in the form of a capsule. The patient would then lie down in a magnetic guidance system. It is envisioned that the physician, via a joystick, will then be able to navigate the capsule easily to the areas of interest and that the capsule will provide real-time high-resolution images on a display in the examination room.


"In cooperation with our partner Olympus, we usher a new era in endoscopy. We believe that the magnetically guided capsule endoscope will enable quick examinations that are comfortable for the patient. This system will be an excellent addition to current methods in endoscopy, for instance within the scope of aftercare," said Hermann Requardt, CEO of Siemens Healthcare.

“As a leading manufacturer of endoscopes, Olympus is continuously working to develop products that can be used safely and with confidence. Our aim is to create endoscopes that minimize the stress on patients and that are user-friendly for physicians. Capsule endoscopes have excellent potential from these perspectives. We see this joint development project with Siemens as the realization of one of our visions for the future of capsule endoscopes,” said Haruhito Morishima, President, Olympus Medical Systems Corporation. Traditionally capsule endoscopes are moved only by peristaltic motion in the gastrointestinal tract.

This often makes it difficult to guide the capsule to a specific location, and examinations are therefore limited to confined areas of the gastrointestinal tract, such as the small intestine. There are many medical cases that involve the gastrointestinal tract beyond the small intestine, and capsules designed for use in the small intestine can not be used for thorough examinations of the large internal cavity.

Siemens Healthcare and Olympus Medical Systems Corp. are therefore developing a technology that is intended to allow the physician to steer a capsule interactively to observe any location in the stomach.

Siemens Healthcare, one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, including magnetic resonance imaging (MRI) systems, together with Olympus, the world’s leading manufacturer of endoscopes and innovative solutions for many healthcare disciplines, are combining their most advanced technologies for the new project. Both companies are jointly developing the capsule endoscopy unit, the magnet guidance system, and the image processing and guidance information systems. Currently the two providers have developed a prototype which will be used to determine the safety, effectiveness and benefits of this new generation of endoscopic technology.

Features of the prototype capsule endoscope, image processing and guidance information system and guidance magnet:

The capsule endoscope will be approximately 31mm long and 11mm in diameter. Camera systems mounted at both ends of the capsule are intended to allow observation inside the stomach. Realtime observation will be made possible by means of captured images, which will be transmitted to an image processing system, and guidance information on the posture of the capsule endoscope as it is navigated by magnetic guidance.

During the examination, the patient’s stomach will be filled with water to provide a field of vision for the capsule endoscope and enable navigation. The patient will be positioned within the guidance magnet, placing the stomach of the patient with the capsule endoscope in the center of the system. It is anticipated that the physician will control the motion of the capsule with a joystick. It will be possible to tilt and rotate the capsule and move it horizontally and vertically. It is conceptualized that guidance magnet will generate magnet fields that vary over time, making it possible to steer the capsule as desired in real-time. The intensity of those magnetic fields is between those of magnetic resonance scanners and the basic field of the earth.

About Siemens Healthcare

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 48,000 employees worldwide and operates around the world. In fiscal year 2009 (to September 30), the Sector posted revenue of 11.9 billion euros and profit of around 1.5 billion euros.

About Olympus Medical Systems Corporation

Olympus developed the first gastrocamera in 1950, and has since developed a wide range of fiberscopes and videoscopes for direct internal observation of the human body. Today, we are expanding our minimally invasive treatment business to offer a wide range of instruments and peripheral devices for medical treatment and clinical diagnoses, including endoscopic surgery. We are improving medical and healthcare services by developing “more patient-friendly medical care” technology for early detection and treatment of diseases, even “greater reliability” in our unsurpassed devices, and “high efficiency” in our products and services to better serve our customers’ needs.

PR contact Olympus Corporation: pr_info-m@ot.olympus.co.jp

Florian Gersbach | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare
http://www.olympus-global.com/en/global

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>