Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New instrument helps researchers see how diseases start and develop in minute detail

26.10.2011
Researchers at Lund University can now study molecules which are normally only found in very small concentrations, directly in organs and tissue.

After several years of work, researchers in Lund have managed to construct an instrument that ‘hyperpolarises’ the molecules and thus makes it possible to track them using MRI. The technology opens up new possibilities to study what really happens on molecular level in organs such as the brain.

Magnetic resonance imaging (MRI) is an established technique which over the years has made it possible for researchers and healthcare professionals to study biological phenomena in the body without using ionising radiation, for example X-rays.

The images produced by normal MRI are, to put it simply, pictures of water in the body, since the body is largely made up of water. MRI produces images of the hydrogen nuclei in water molecules. It can also be used to study other types of nuclei in many other interesting molecules. The only problem is that the concentration of molecules that are interesting to track is so low that they are not visible on a normal MRI scan. It is this problem that the researchers have now solved by constructing a ‘polariser’.

In the polariser, the researchers make these molecules visible to the MRI scanner by hyperpolarising them. The molecules are then injected into their natural body tissue.

“Then we can follow the specific molecule and see the reactions in which it is involved. This gives us a unique opportunity to see and measure enzymatic reactions directly in the living tissue”, explains Professor Deniz Kirik.

The technology could be used to study molecules in many different types of tissue in the body. Deniz Kirik, who is a Professor of Neuroscience, will focus on developing this technology to study the brain – something which has not been done before.

“The brain is not an easy target!” he observes. “When we look inside the brain today using MRI, we see the molecules that are most numerous. However, it is rarely these common molecules we want to study. We want to study how molecules that have a low concentration in the tissue behave, for example how signal substances are produced, used and broken down. It is when these processes don’t work that we become ill.

“This technology has the potential to help us do just that. If we can make it work, it will be a breakthrough not only for neuroscience but also for other research fields such as diabetes, cancer and inflammation, where similar obstacles limit our understanding of the basic molecular processes which lead to disease.”

Professor Hindrik Mulder is one of the co-applicants for the project and he will develop and use the technology in diabetes research. Dr Vladimir Denisov from the Lund University Bioimaging Centre is leading the technical development within the project.

At present there are only a few polarisers in the world and Lund’s newly built device is the only one in Scandinavia to be fully available for academic research.

“All the other equivalent instruments are purchased commercially and come with restrictions placed by the manufacturer. We therefore chose to take the longer and more complicated route of building the instrument ourselves”, explains a pleased and proud Deniz Kirik.

Now that the instrument has become operational, the researchers have started on the first experiments.

“This is the first of two steps”, says Deniz Kirik. “The next step in this frontline research is to develop the unique technology by constructing an even more sophisticated polariser which will enable advanced experiments on animal models for various diseases.”

The project has been made possible through a grant from the Swedish Research Council and earlier grants from the Swedish Foundation for Strategic Research.

Contact: Deniz Kirik, +46 46 222 05 64, +46 733 82 25 86, Deniz.Kirik@med.lu.se

Megan Grindlay | idw
Further information:
http://www.lu.se

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>