Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical proof – Siemens' Artis Q.zen minimizes dose in cardiology

02.09.2013
- Significant dose reductions in electrophysiological examinations and interventional cardiology
- Angiography system with unique x-ray tube and detector

The new Artis Q.zen angiography system from Siemens has proven itself in everyday clinical practice. The system has been in use since November 2012 at the Basel University Hospital in Switzerland where both patients and staff benefit from the low radiation dose that an entirely novel technology has made possible.



"My team spends about three to four hours a day in the Electrophysiology Laboratory (EP) in connection with about eight to ten operations. This is why reducing the dose is so important," says Prof. Stefan Osswald, head of the cardiology department. With Artis Q.zen, Siemens is demonstrating its innovative strength as part of the global "Agenda 2013" Sector initiative.

Studies show that on average one in four people suffer from atrial fibrillation, the most widespread form of cardiac arrhythmia, at some stage during their lives. A further increase can be expected as a result of demographic change. Electrophysiological studies and interventions can be used to examine and treat a large number of patients. This involves ablating tiny points in the myocardial tissue using an ablation catheter in order to return the heart to its correct rhythm. Depending on the level of complexity, this type of procedure can take two to three hours. Each misrouting of the electrical impulses that trigger cardiac arrhythmia, which is measured in milliseconds, must first be located and mapped using electrophysiology catheters. It is only at that point that the doctor can develop an individual treatment plan tailored to the patients' needs. Prof. Osswald has been working with Artis Q.zen since November 2012. "We can now manage with radiation doses that are up to 85 percent below usual values," he says. This benefits both patients and staff alike.

In addition to cardiac arrhythmia, there is another clinical picture in the field of cardiology that is on the rise, and is the most frequent cause of death in the industrialized nations: coronary heart disease. This involves narrowing and blockage of the arteries supplying blood to the heart muscle. In Europe alone, over 1.8 million people die of this chronic disease each year. Narrowings – known as stenoses – can be widened using balloon catheters to restore the flow of blood. Stents keep the constricted locations permanently open. During this procedure, known as percutaneous coronary intervention (PCI), the cardiologist has to position the stent with millimeter precision despite cardiac movement. Using Artis Q.zen, the cardiologist is supported by the advanced guidance of Clearstent Live. With Clearstent Live, stent enhancement takes place in real time. The software eliminates cardiac movement, allowing cardiologists to verify stent positioning relative to the cardiac anatomy or to previously deployed stents. The enhanced images are displayed side-by-side with the current live-image without any noticeable lag and while the operator can still move the balloon mounted stent. In interventions of this nature, Prof. Osswald has observed a clear reduction in dose compared to the previous model, up to 50 percent. "The main advantage is the massively better visualization of the stent and the respective vessel-section. Hence, additional images to decide whether the stent has been fully expanded are no longer necessary," says Prof. Osswald.

Introduced by Siemens during the Radiological Society of North America (RSNA) congress last year, the Artis Q.zen comes with two new advances making it possible to reduce the radiation dose while maintaining and improving the quality – a new x-ray tube and a new detector. The x-ray tube is the only one on the market exclusively equipped with "flat emitter" technology. The new tube permits the system to generate detailed images of moving objects and even the smallest vessels in a beating heart within a very short time at a maximum current of 1,000 milliamperes (mA). The new technology delivers a more richly detailed image for the subsequent treatment.

The new Artis Q.zen detector enables x-ray checks to be performed in the ultra-low dose range, i.e. 20 nanograys (nGy) or less. What is new and unique worldwide is the fact that the detector is based on crystalline rather than on amorphous silicon technology. This is a material of homogenous chemical structure used mainly in the solar industry. It ensures that the image signal is enhanced with substantially reduced electronic noise in the image. This means that the cardiologist can achieve the same image quality using a lower dose.

Follow us on Twitter: www.twitter.com/siemens_press

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products/features (here mentioned) are not commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

The statements by Siemens' customers described herein are based on results that were achieved in the customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of IT adoption) there can be no guarantee that other customers will achieve the same results.

Reference Number: HIM201308020e

Contact
Ms. Kathrin Schmich
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-5337
Kathrin.Schmich​@siemens.com

Kathrin Schmich | Siemens Healthcare
Further information:
http://www.siemens.com/presse/esc2013

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>