Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biosensor Could Help Detect Brain Injuries During Heart Surgery

12.11.2013
Johns Hopkins engineers and cardiology experts have teamed up to develop a fingernail-sized biosensor that could alert doctors when serious brain injury occurs during heart surgery. By doing so, the device could help doctors devise new ways to minimize brain damage or begin treatment more quickly.

In the Nov. 11 issue of the journal Chemical Science, the team reported on lab tests demonstrating that the prototype sensor had successfully detected a protein associated with brain injuries.


In lab tests, this small biosensor detected a protein associated with brain injuries. Photo by Weiguo Huang.

In lab tests, this small biosensor detected a protein associated with brain injuries. Photo by Weiguo Huang.

“Ideally, the testing would happen while the surgery is going on, by placing just a drop of the patient’s blood on the sensor, which could activate a sound, light or numeric display if the protein is present,” said the study’s senior author, Howard E. Katz, a Whiting School of Engineering expert in organic thin film transistors, which form the basis of the biosensor.

The project originated about two years ago when Katz, who chairs the Department of Materials Science and Engineering, was contacted by Allen D. Everett, a Johns Hopkins Children’s Center pediatric cardiologist who studies biomarkers linked to pulmonary hypertension and brain injury. As brain injury can occur with heart surgery in both adults and children, the biosensor Everett proposed should work on patients of all ages. He is particularly concerned, however, about operating room injuries to children, whose brains are still developing.

“Many of our young patients need one or more heart surgeries to correct congenital heart defects, and the first of these procedures often occurs at birth,” Everett said. “We take care of these children through adulthood, and we have all have seen the neurodevelopment problems that occur as a consequence of their surgery and post-operative care. These are very sick children, and we have done a brilliant job of improving overall survival from congenital heart surgery, but we have far to go to improve the long-term outcomes of our patients. This is our biggest challenge for the 21st century.”

He said that recent studies found that after heart surgery, about 40 percent of infant patients will have brain abnormalities that show up in MRI scans. The damage is most often caused by strokes, which can be triggered and made worse by multiple events during surgery and recovery, when the brain is most susceptible to injury. These brain injuries can lead to deficiencies in the child’s mental development and motor skills, as well as hyperactivity and speech delay.

To address these problems, Everett sought an engineer to design a biosensor that responds to glial fibrillary acidic protein (GFAP), which is a biomarker linked to brain injuries. “If we can be alerted when the injury is occurring,” he said, “then we should be able to develop better therapies. We could improve our control of blood pressure or redesign our cardiopulmonary bypass machines. We could learn how to optimize cooling and rewarming procedures and have a benchmark for developing and testing new protective medications.”

At present, Everett said, doctors have to wait years for some brain injury-related symptoms to appear. That slows down the process of finding out whether new procedures or treatments to reduce brain injuries are effective. The new device may change that. “The sensor platform is very rapid,” Everett said. “It’s practically instantaneous.”

To create this sensor, materials scientist Katz turned to an organic thin film transistor design. In recent years sensors built on such platforms have shown that they can detect gases and chemicals associated with explosives. These transistors were an attractive choice for Everett’s request because of their potential low cost, low power consumption, biocompatibility and their ability to detect a variety of biomolecules in real time. Futhermore, the architecture of these transistors could accommodate a wide variety of other useful electronic materials.

The sensing area is a small square, 3/8ths-of-an-inch on each side. On the surface of the sensor is a layer of antibodies that attract GFAP, the target protein. When this occurs, it changes the physics of other material layers within the sensor, altering the amount of electrical current that is passing through the device. These electrical changes can be monitored, enabling the user to know when GFAP is present.

“This sensor proved to be extremely sensitive,” Katz said. “It recognized GFAP even when there were many other protein molecules nearby. As far as we’ve been able to determine, this is the most sensitive protein detector based on organic thin film transistors.”

Through the Johns Hopkins Technology Transfer Office, the team members have filed for full patent protection for the new biosensor. Katz said the team is looking for industry collaborators to conduct further research and development of the device, which has not yet been tested on human patients. But with the right level of effort and support, Katz believes the device could be put into clinical use within five years. “I’m getting tremendous personal satisfaction from working on a major medical project that could help patients,” he said.

Everett, the pediatric cardiologist, said the biosensor could eventually be used outside of the operating room to quickly detect brain injuries among athletes and accident victims. “It could evolve into a point-of-care or point-of-injury device,” he said. “It might also be very useful in hospital emergency departments to screen patients for brain injuries.”

The lead author of the Chemical Science paper was Weiguo Huang, a postdoctoral fellow in Katz’s lab. Along with Everett and Katz, the co-authors, all from the Whiting School of Engineering and the School of Medicine, were Kalpana Besar, Rachel LeCover, Pratima Dulloor, Jasmine Sinha, Josue F. Martinez Hardigree, Christian Pick, Julia Swavola, Joelle Frechette and Michael Bevan.

Funding for the sensing project was provided by the Cove Point Foundation and the Johns Hopkins Environment, Energy, Sustainability and Health Institute. Fundamental materials characterization was funded by the U.S. Department of Engery Grant Number DE-FG02-07ER46465.

Color photo of the biosensor available; contact Phil Sneiderman.

Johns Hopkins University news releases can be found online at http://releases.jhu.edu/. Information on automatic email delivery of science and medical news releases is available at the same address

November 11, 2013 Tags: biosensor, brain injury, cardiology, heart surgery, materials science

Posted in Engineering, Medicine and Nursing, Technology

Office of Communications
Johns Hopkins University
3910 Keswick Road, Suite N2600
Baltimore, Maryland 21211
Phone: 443-997-9009 | Fax: 443 997-1006

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>