Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New easy-read road signs based on PSU research

10.12.2004


Example of a sign near Penn State that uses the new Clearview road sign typeface based on University research. Credit: Penn State, Greg Grieco


New easier-to-read road signs based on Penn State research are appearing across the U.S. and Canada.

The Federal Highway Administration (FHWA) has approved the interim use of a new typeface, called Clearview, for signs on all public streets, highways, and byways. New signs bearing Clearview, instead of the old familiar Highway Gothic, already appear on Routes 322 and 80 in Pennsylvania near Penn State, on highways throughout Texas and in Canada.

A decade in development, the Clearview Typeface System for traffic control devices was developed by a design team that included Dr. Martin Pietrucha, a civil engineer and director of the University’s Science, Technology and Society program, and Philip Garvey, research associate at Penn State’s Pennsylvania Transportation Institute.



The new Clearview road sign typeface is so much more legible than the existing typeface that it gives drivers going 55 mph added seconds to respond to directions.

Clearview offers a 20 percent improvement in legibility and recognition with the same size sign as currently used. Replacing signs bearing the 50-year-old Standard Highway Sign Alphabet with new Clearview signs should not cause driver confusion or increase costs, the two Penn State researchers say.

An interdisciplinary team including perceptual psychologists, traffic engineers, type designers, graphic designers, vision experts and optics engineers developed Clearview. Their goal was to improve road sign legibility and recognition at night, especially for older drivers.
Pietrucha says, "Clearview achieves its greater legibility by using upper and lower case with initial capital letters, special spacing based on how a viewer reads a legend from an extended distance and by eliminating nighttime overglow or halo-ing."

He explains that overglow occurs when a car’s headlights shine directly on a sign on which letters have been formed from highly reflective material. The letters become, momentarily, so bright that they lose their familiar shape and look instead like blobs. Overglow is especially troublesome for those over age 65.

Clearview retains its readability, despite overglow, because the letters have been designed to have more interior space. The B, e, g and a, for example, have more space inside the letters so that when halo-ing occurs, the overglow doesn’t entirely fill them up.

Garvey notes that Clearview’s design is based on the results of six formal studies and dozens of field reviews using younger drivers as well as older ones in both day and night driving conditions.

"Inadequate signing can be a contributing factor in roadway crashes," he adds. "Although Clearview was intended to help older drivers, our studies show that the appreciable gain in reaction time provided by the new typeface will be achieved by drivers regardless of age."

The Clearview Typeface system for traffic control devices was developed by a design team that included Donald Meeker and Christopher O’Hara of Meeker & Associates Inc., James Montalbano of Terminal Design Inc., and Pietrucha and Garvey, with supporting research by Dr. Gene Hawkins and Dr. Paul Carlson of the Texas Transportation Institute (TTI) sponsored by TxDOT. Susan T. Chrysler of TTI provided consultation on experimental design.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>