Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of yeast and men: Unraveling the molecular mechanisms of Friedreich's ataxia

13.07.2009
Researchers in human genetics have long known that expansions of GAA repeats – resulting in this nucleotide triplet repeating hundreds or thousands of times – cause the most common hereditary neurological disorder known as Friedreich's ataxia. There is no cure for this condition, which damages the nervous system and can result in heart disease.

The disease's origins have been proven through analysis of genetic records of affected individuals and their families. But scientists have not been able to study the molecular processes that cause the GAA sequence to expand so profoundly because they have lacked a model that could produce the large-scale expansions for experimental purposes.

In a paper to be published in the July issue of "Molecular Cell," a research team lead by Sergei Mirkin, White Family Professor of Biology at Tufts' School of Arts and Sciences, has created an experimental model that does indeed produce large-scale expansion of GAA repeats during DNA replication.

In doing so, Mirkin and his team were able to analyze GAA repeat expansions and then identify cellular proteins that thwarted normal replication and promoted the elongated sequence.

"In essence we believe that the replication machinery occasionally gets tangled within a repetitive run, adding extra repeats while trying to escape," says Mirkin. "And the longer the repeat - the more likely the entanglement is. That is as if a car which entered a roundabout misses the right exit due the heavy traffic and has to make the whole extra circle before finally escaping."

The researchers started with common baker's yeast because it allowed them to monitor the progress and genetic control of repeat expansions, which is not feasible in humans.

When they inserted GAA repeats of varying lengths (50-to-150 triplet repeats) into an intron of the specifically modified reporter gene they found that widespread expansions of these repeats indeed occurred. These expansions blocked RNA splicing and, as a result, deactivated the gene.

This allowed the team to measure the precise rate of repeat expansions at various experimental settings by growing yeast on the special selective medium followed by determining the repeat lengths via polymerase chain reaction.

Using this approach, the researchers observed massive expansion of GAA repeats that ranged between 200 and 450 repeats. Remarkably, they found that the likelihood of a repeat expansion increased as it grew longer, which closely mimicked the situation observed in the genetic record of humans with Friedreich's ataxia.

Mirkin and his team then carried out a genetic screen to identify yeast proteins affecting repeat expansions. They found that the proteins within the cell that are known to facilitate the smooth replication fork progression decreased repeat expansions. Meanwhile the proteins responsible for the fork deviations, such as template switching and reversal, increased repeat expansions.

Mirkin's research is funded by the National Institutes of Health. Mirkin's team included Tufts postdoctoral fellow Alexander A. Shishkin; graduate student Irina Voineagu and Brook T. Chernot; undergraduates Robert Matera, Nicole Cherng and former laboratory member Maria M. Krasilnikova, who is currently on the faculty of Penn State. Collaborators also included Georgia Tech Professor Kirill Lobachev and postdoctoral fellow Vydhia Narayanam.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>