Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why some neurons “outsource” their cell body

21.04.2015

Nerve cells come in very different shapes. Researchers at the Bernstein Center Berlin now reveal why, in insects, the cell body is usually located at the end of a separate extension. Using mathematical models, they show that this increases the strength of electrical signal transmission at no additional energetic cost.

Nerve cells follow a functional design: They receive input signals over more or less ramified cell branches (dendrites), which they forward to other nerve cells along an elongated, thin cell process (axon).


Nerve cells have different shapes: while the cell body (red) is found in a central position in rat, it is located at the end of a cell prolongation in fly.

Copyright: Janina Hesse, 2015

The cell body contains the nucleus with genetic material and other components of the machinery that keeps the neuron alive. Its location differs significantly between animal classes: in mammals, the cell body is usually found at a central position between the dendrites and the axon, while in insects, it is often “outsourced” to the end of a separate prolongation.

“Since the description of nerve cells by Santiago Ramón y Cajal, there have been many speculations about the reasons for these different morphologies,” says first author Janina Hesse at the Bernstein Center Berlin and the Humboldt University of Berlin. “Our study now points to a crucial cause: the reduction of signal loss and energy required during the transmission of electrical signals within the nerve cell.”

To support their hypothesis, the biologists applied mathematical models to determine the benefits of the remote location of the cell body. The computer models included the essential components of a nerve cell in a simplified form. In the models, the cell body was located either in a central or in an externalized position. This way, the researchers could simulate the electrical signal transmission in both conditions and estimate the required energy and conduction losses.

“In order to transmit a signal to another cell, a neuron requires a certain signal strength in the axon. When the signal has to pass a central soma before it reaches the axon, the membrane leak diminishes the signal. This signal loss can be countered by active boosting, which is energetically costly for large cell bodies. A better solution may be an externalization of the cell body,” senior author Susanne Schreiber explains.

Hence, for organisms with large cell bodies, it is best not to make the signal pass across the cell body, but to transmit it straight from the dendrite to the axon. Insects take this direct route by relocating the neural cell bodies to the end of a thin prolongation. This advantageous shape allows the neurons to efficiently transmit even small input signals to neighboring cells. With their results, the Berlin researchers have shed light on a mystery neuroscientists have pondered since the first detailed morphological studies over 100 years ago. Their study has been published in the current issue of the journal Current Biology.

The Bernstein Center Berlin is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Janina Hesse
Humboldt-Universität zu Berlin
Institut für Theoretische Biologie (ITB)
Philippstr. 13, Haus 4
10115 Berlin
Tel: +49 (0)30 2093 98407
E-Mail: janina.hesse@bccn-berlin.de

Prof. Dr. Susanne Schreiber
Humboldt-Universität zu Berlin
Institut für Theoretische Biologie (ITB)
Philippstr. 13, Haus 4
10115 Berlin
Tel: +49 (0)30 2093 98405
E-Mail: s.schreiber@hu-berlin.de

Original publication:
J. Hesse & S. Schreiber (2015): Externalization of neuronal somata as an evolutionary strategy for energy economization. Current Biology, 25(8), R324 - R325.
doi: 10.1016/j.cub.2015.02.024
Free access link: http://authors.elsevier.com/a/1QurA3QW8RZuOX

Please see dispatch in the same edition:
J. E. Niven (2015): Neural Evolution: Marginal gains through soma location. Current Biology, 25(8), pR330–R332.
doi: 10.1016/j.cub.2015.02.059

Weitere Informationen:

http://www.neuron-science.de Website research group Schreiber
https://www.hu-berlin.de Humboldt-Universität in Berlin
https://www.bccn-berlin.de Bernstein Center Berlin
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>