Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT MD Anderson scientists uncover the nuclear life of actin

25.03.2013
Protein with key job in muscle function moonlights in nucleus to help regulate genes

A key building block of life, actin is one of the most abundant and highly conserved proteins in eukaryotic cells.

First discovered in muscle cells more than 70 years ago, actin has a well-established identity as a cytoplasmic protein that works by linking itself in chains to form filaments. Fibers formed by these actin polymers are crucial to muscle contraction.

So it came as a surprise when scientists discovered actin in the nucleus. Labs have been working for the past few decades to figure out exactly what it's doing there.

A new study published this week in Nature Structural & Molecular Biology reveals that actin has a new and fundamental nuclear function, and that surprisingly, it accomplishes this task in its single-molecule (monomeric) form – not through polymerization.

Senior author of the study Xuetong "Snow" Shen, Ph.D., associate professor in The University of Texas MD Anderson Cancer Center Department of Molecular Carcinogenesis, has been fascinated by the mystery of nuclear actin. In collaboration with researchers from Colorado State University, his lab developed a unique model system to nail down actin's function in the nucleus by studying the actin-containing INO80 chromatin remodeling complex.

In 2000, as a postdoc at NIH in Carl Wu's lab, Shen identified actin as a component of the INO80 complex, adding to the growing list of evidence that actin indeed has a life in the nucleus. However, how actin actually works in the nucleus remains fuzzy due to lack of clear experimental systems.

"Our model system opened up a new opportunity to look in depth at the function of nuclear actin as it relates to gene regulation, genome stability, and ultimately cancer," Snow said.

A nuclear role for monomeric actin

Because yeast have only a single actin gene, the authors reasoned that studying INO80 in yeast cells would allow a direct assessment of the protein's nuclear function. In contrast, mammals have at least six forms of actin coded by separate genes, making their study more difficult.

The researchers used both genetic and biochemical methods to dissect actin's role in the INO80 complex. The INO80 complex normally functions in the nucleus to rearrange chromatin ¬– the intertwined proteins and DNA that are packaged into chromosomes – regulating the expression of many different genes.

The authors found that a mutant form of actin impairs the ability of INO80 to function correctly, implicating actin in the process of chromatin remodeling – an exploding field of research with applications in cancer diagnosis and treatment.

In the cytoplasm, actin functions primarily as a polymer. Cytoplasmic actin is a component of the cytoskeleton and the muscle contractile machinery, and is essential for cell mobility, including cancer metastasis. Actin inside the INO80 complex is arranged in a clever way such that it cannot polymerize; instead, actin's monomeric form appears to interact with chromatin.

"Our study challenges the dogma that actin functions through polymerization, revealing a novel and likely a fundamental mechanism for monomeric nuclear actin," Shen said.

New findings for an ancient complex

Because actin and several of the other INO80 components are so highly conserved, even in human cells, this mechanism likely represents an ancient, fundamental role of actin, which has been preserved through evolution.

Shen's group is now teasing out the exact mechanism by which nuclear actin interacts with chromatin. They also hope to extend the results to human cells and to identify potential ways by which nuclear actin could be involved in cancer.

Chromatin is critical for maintaining the delicate balance between gene activation and repression, Shen said. "Disrupting this regulation can lead to cancer, and it remains to be seen whether nuclear actin has a role in this process."

Lead authors of the study are Prabodh Kapoor, Ph.D., and Mingming Chen, Ph.D., postdoctoral fellows in Shen's lab. Co-authors are Duane David Winkler, Ph.D., and Karolin Luger, Ph.D., of the Department of Biochemistry and Molecular Biology at Colorado State University. Shen, senior author, also is a member of the Center for Cancer Epigenetics at MD Anderson.

The research was funded by grants from the National Cancer Institute (K22CA100017) and the National Institute of General Medical Sciences (RO1GM093104), both of the National Institutes of Health, the Center for Cancer Epigenetics, the Theodore N. Law Endowment for Scientific Achievement at MD Anderson and by MD Anderson's Odyssey postdoctoral program to Kapoor

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For eight of the past 10 years, including 2011, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Get M. D. Anderson News Via RSS Follow MDAnderson News on Twitter

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>