Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the HI Virus with High-resolution Microscopy

09.04.2014

BMBF funds joint project to develop new microscopy methods

Experts from science and industry are working on new methods of microscopy and advancing microscopy technology to improve our ability to study and understand the molecular processes of HIV infection.

Last year, the Federal Ministry of Education and Research (BMBF) approved approx. 4.6 million euros for this joint project called “Chemical Switches and Click Chemistry for High-resolution Microscopy”. Meanwhile preparations for the start of the project are complete.

The three-year “Switch Click Microscopy” project will involve scientists from Heidelberg University and Heidelberg University Hospital, the University of Würzburg, the European Molecular Biology Laboratory in Heidelberg as well as experts from four companies. The project coordinator is Prof. Dr. Dirk-Peter Herten, a member of the CellNetworks Cluster of Excellence who also works at the Institute for Physical Chemistry at Heidelberg University.

As Prof. Herten explains, there are more than 35 million people worldwide living with the human immunodeficiency virus HIV. “AIDS, the acquired immunodeficiency syndrome this virus causes, is now quite treatable in the industrialised world.

But the lifelong treatment with medication has to be continually adjusted. Because the virus is constantly changing, new treatment strategies are needed,” continues the Heidelberg scientist.

“By shedding light on how the virus functions and propagates, we can target our research to develop specific methods for diagnosis and treatment.” Researchers in the joint project are particularly focussed on changes in the T-cells of the immune system effected by the HIV Nef protein. In order to better investigate these processes, the team intends to greatly expand on previous methods of light microscopy.

“The key is the development of new fluorescent probes,” explains Prof. Herten. A new type of direct protein labelling should substantially improve the microscopic image and allow biological structures to be reconstructed in 3D super-resolution. To this end, the scientists intend to synthesise fluorescent probes whose properties can be controlled through chemical reactions.

“The goal is to selectively control the fluorescence by adding certain reagents,” stresses the project coordinator. “The new approach to super-resolution fluorescent microscopy can then function independently of light-driven processes.” Furthermore, the methods for protein labelling are to be improved to prevent artefacts and unspecific signals in the imaging.

The researchers are also targeting new developments in the field of microscopy technology, including methods to simplify adding reagents during microscopy as well as new light sources whose output and wavelengths are attuned to the newly developed fluorescent dyes.

Another field of endeavour are optical technologies that permit three-dimensional super-resolution imaging. According to Prof. Herten, these technical enhancements are to be based on standard microscopy systems to ensure wide-ranging and cost-efficient use. “Improving microscopic imaging makes understanding the biological processes surrounding the HIV immunodeficiency virus easier. This knowledge will allow us to focus the search for new AIDS drugs much more effectively.“

The industrial partners in the project include ATTO-TEC GmbH in Siegen, Sirius Fine Chemicals SiChem GmbH in Bremen als well as FEI Munich GmbH and TOPTICA Photonics AG in Munich. The research work at Heidelberg University will be supported through BMBF funds in the amount of approx. 670,000 euros.

Internet information:
http://www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html
http://www.photonikforschung.de/forschungsfelder/biophotonik/ultrasensitiver-nachweis-und-manipulation-vonin-zellen

Contact:
Adjunct Professor Dr. Dirk-Peter Herten
CellNetworks Cluster of Excellence
Institute for Physical Chemistry
Phone: +49 6221 54-51220
dirk.herten@bioquant.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>