Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The galloping evolution in seahorses

15.12.2016

An international research collaboration, which includes Konstanz evolutionary biologists and genome researchers, has sequenced the entire genome of the seahorse and investigated essential mechanisms of evolution

Without a doubt, the seahorse belongs to Darwin's "endless forms most beautiful". Its body form is one of a kind. It has neither a tail nor pelvic fin, it swims vertically, bony plates reinforce its entire body and it has no teeth, a rare feature in fish.


Barbour`s Seepferd (Hippocampus barbouri).

Photo: Ralf Schneider

Another peculiarity is that male seahorses are the ones to become pregnant. The genome project, comprising six evolutionary biologists from Professor Axel Meyer’s research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse. They obtained new molecular evolutionary results that are relevant for biodiversity research: the loss and duplication of genes as well as the loss of regulative elements in its genome have both contributed to the rapid evolution of the seahorse. The results will be published as the cover story in "Nature" on 15 December 2016.

The questions underlying genome sequencing of how diversity emerges and what its genetic basis is, can be superbly answered through the example of the seahorse because numerous unique features evolved in the seahorse within a short time. This is how the researchers around evolutionary biologist Professor Axel Meyer were able to identify the genetic basis for the disappearance of the seahorse’s teeth: several genes that are present in many fish as well humans and contribute to the development of teeth, were lost in seahorses.

... more about:
»genes »genetic basis »morphology »seahorses »skeleton

The seahorse no longer needs teeth due to the special way in which it consumes its food. Instead of chewing its prey, it simply sucks it in with the enormous negative pressure that it can generate in its long snout. This same genetic forfeiture applies to genes that contribute to the sense of smell: seahorses hunt visually and have very good sight, using their eyes that can move independently of each other. Therefore, the olfactory sense seems to only play a minor role.

Particularly noteworthy is the loss of the pelvic fins. In evolutionary terms, they share the same origin as human legs. An important gene, tbx4, that is responsible for this feature, was found in nearly all vertebrates, but is missing from the seahorse's genome. In order to test the function of this gene, a functional analysis was carried out in addition to the genome analysis. For this purpose, the corresponding gene was deactivated via the CRISPER-cas method in zebrafish, a genetic model system. As a result, these fish then also lost their pelvic fins. This proved the importance of this gene in the “normal” development of the pelvic fins.

In addition to gene losses, gene duplications during the evolution of the seahorse were also detected. When a gene is duplicated, the copy can fulfil an entirely new function. In the seahorse, this is probably how a part of the newly created gene makes male pregnancy possible. These genes presumably regulate the pregnancy, for example, by coordinating the embryos' hatching within the brood pouch of the male. Once the embryo is hatched, the additional genes are activated. The authors of the study presume that these genes contribute to the process where the baby fish leave the male’s brood pouch.

According to this study in "Nature", evolution does not only act through changing major roles of genes, but it also influences regulatory elements (genetic switches) during evolution. Regulatory elements are DNA segments that control the function of genes. Some of them barely change during the course of evolution since they have important regulatory functions. But several such unchanging and seemingly crucial elements are missing in sea-horses.

This is also and especially the case for elements that are responsible for the typical development of the skeleton in fish, but also in humans. This is probably one of the reasons why the seahorse's skeleton has been so greatly modified. It lacks ribs, for example. Instead, its body is armoured with bony plates that add strength and better protection from predators. Additionally, its prehensile curly tail allows seahorses to be camouflaged and remain motionless by holding on to seaweed or corals. The genome sequences suggest that the loss of the corresponding regulatory sequence led to this ossification.

Due to its special morphology, the seahorse superbly demonstrates how genetic changes can lead to evolutionary changes in distinguishing traits – and therefore to a better understanding of the genetic basis for the evolution of bizarre and beautiful organisms such as seahorses.

Original publication:
Lin et al.: The seahorse genome and the evolution of its specialized morphology. Nature, 15 December 2016. Vol 540, No. 7633.
DOI: doi:10.1038/nature20595

Facts:
• A total of 34 researchers from the University of Konstanz as well as from Singapore and China participated in the research collaboration.

Note to editors:
You can download a photo here:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2016/Seahorse-Uni-KN-2016.jp...
Caption:
Barbour`s Seepferd (Hippocampus barbouri).
Photo: Ralf Schneider

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

Further reports about: genes genetic basis morphology seahorses skeleton

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>