Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018

Biodiversity goes beyond species diversity. Another important aspect of biodiversity is genetic variation within species. A notable example is the immense variety of cultivars and landraces of crop plants and their wild progenitors. An international research consortium led by the of the IPK Gatersleben and supported by the iDiv research centre has now characterised at the molecular level a world collection of barley comprising seed samples from a total of more than 22,000 varieties. In a study published in the journal Nature Genetics, the scientists usher in a new era for gene banks that transform from museums of past crop diversity into bio-digital resource centres.

Genebanks store samples of cultivars, landraces and wild relatives of crop plants from all over the world to safeguard our agricultural heritage and exploit it for future crop improvement.


Illustrated variety of different barley accessions.

IPK Gatersleben

The German federal ex situ gene bank at IPK in Gatersleben hosts one of the world’s most comprehensive collections of cultivated plants, including 22,000 barley seed samples.

Under the leadership of the IPK Gatersleben, researchers from the German Centre for Integrative Biodiversity Research (iDiv), the Julius Kühn Institute (JKI, German Federal Research Centre for Cultivated Plants) in Quedlinburg and the University of Göttingen collaborated with colleagues from Japan, China, and Switzerland. This international cooperation revealed how well the IPK collection represents global barley diversity.

A single plant was genotyped for each of more than 22,000 seed samples, enabling the scientists to identify duplicate samples within the collection. Opening up new ways for genetically informed quality management, this comprehensive dataset also guides the effective use of the collection in research and breeding by pinpointing lines for further in-depth characterization.

Prof Dr Nils Stein (IPK Gatersleben and University of Göttingen) says: “This publication enables us to fully describe the wide range of morphological diversity of a worldwide genebank in terms of molecular genetics.” To do this, Stein and his team used a method called “genotyping by sequencing” (GBS).

The complete DNA sequence of the barley variety ‘Morex’, which was released in 2017, forms the basis of the present work. It serves as a high-quality sequence anchor for the GBS information. To characterise genetic diversity between cultivated and wild barley forms throughout the whole genome, the researchers searched for so-called SNPs (single nucleotide polymorphisms).

In total, they found more than 171,000 of these small DNA variants in the huge barley genome consisting of 5 billion base pairs. Stein adds: “This density is sufficient to find even very small differences between samples, but also to confidently flag pairs of duplicated samples in our collection.”

“We can now draw conclusions about the origin, distribution area and relationship between the barley populations hosted in our collection. All digital genetic data are publicly accessible and targeted queries can be submitted online.

A state-of-the art database combines traditional passport records with the new molecular data to inform research and breeding applications,” explains Dr Martin Mascher of the IPK and iDiv, who co-led the study. The combination of historical field data of the genebank with modern molecular analyses is an impressive showcase for the opportunities that still lie dormant within gene banks around the world.

New research methods and international collaborations have paved new ways for the preservation and use of this valuable genetic diversity. Prof Dr Frank Ordon from the Julius Kühn Institute (JKI) points out: “Detailed knowledge about genetic variability and its use are prerequisite for breeding new varieties adapted to a changing environment.

In the future, plant breeders will have to cope with heat, drought stress and new pathogens and also must adapt to changes regarding the use of fertilisers and pesticides. Genes that code for key properties can thus be detected in native species or related wild species more quickly and be used in breeding.”

In the past, the lack of genetic data at the level of whole collections limited practical applications of genetic diversity in breeding and research. Thanks to the new analysis and open research data, it will now be possible to search across 22,626 barley seed samples. To host this unique resource, the researchers developed the BRIDGE “Data Warehouse” as a first steps towards a bio-digital resource centre.

The BRIDGE project:

BRIDGE stands for “Biodiversity informatics to bridge the gap from genome information to educated utilisation of genetic diversity hosted in Genebanks”. Funded in frame of the Leibniz Competition, the project was launched on 1 May 2015 and has been financially supported for the past three years with nearly 1.2 million euros. The aim of BRIDGE is to develop appropriate procedures to connect genetic, genomic and phenotypic information about plant genetic resources preserved in gene banks, enabling fast and easy access to the collection by researchers and breeders. More information is available at: http://bridge.ipk-gatersleben.de/bridge/ .

Wissenschaftliche Ansprechpartner:

Prof Dr Nils Stein
(IPK Gatersleben and Georg August University Göttingen)
Tel.: +49 39482 5522
E-mail: stein@ipk-gatersleben.de

Dr Martin Mascher
(IPK Gatersleben and iDiv Halle-Jena-Leipzig
Tel.: +49 39482 5243
E-Mail: mascher@ipk-gatersleben.de

Prof Dr Frank Ordon
(JKI)
Tel.: +49 3946 47602
E-Mail: frank.ordon@julius-kuehn.de

Originalpublikation:

Sara G. Milner et al (2018): Genebank genomics highlights the diversity of a global barley collection, Nature Genetics. https://www.nature.com/articles/s41588-018-0266-x, DOI: 10.1038/s41588-018-0266-x .

Weitere Informationen:

http://www.ipk-gatersleben.de/genbank/genomik-genetischer-ressourcen/
http://www.ipk-gatersleben.de/unabhaengige-arbeitsgruppen/domestikationsgenomik/
http://www.julius-kuehn.de/en/resistance-research-and-stress-tolerance/

Regina Devrient | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

nachricht Atacama Desert: Some lichens can meet their need for water from air humidity
17.07.2019 | Technische Universität Kaiserslautern

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For bacteria, the neighbors co-determine which cell dies first: The physiology of survival

17.07.2019 | Life Sciences

Harvesting energy from the human knee

17.07.2019 | Physics and Astronomy

Neutrino-Observatorium IceCube am Südpol wird ausgebaut

17.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>