Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing antioxidant drugs is transparent

22.11.2011
A study using genetically modified zebrafish to visualize early events involved in development of human atherosclerosis describes an efficient model – one that the researchers say offers many applications for testing the potential effectiveness of new antioxidant and dietary therapies.

The research, led by scientists from the University of California, San Diego School of Medicine, has been published online by the Journal of Clinical Investigation, and will appear in print in the December 1 issue of the journal.

Atherosclerosis is a process of lipid deposition and inflammation in the artery walls. Low-density lipoprotein (LDL) that carries "bad" cholesterol in blood is easily oxidized, and oxidized LDL promotes inflammatory responses by vascular cells. Inflamed atherosclerotic plaque can often rupture; this results in a blood clot, obstruction of blood flow to the heart or brain, and heart attack or stroke.

An international team of researchers led by Yury Miller, MD, PhD, of the UCSD Department of Medicine, working with colleagues in Australia, developed an approach to see – literally – the accumulation of oxidized LDL in genetically modified zebrafish fed a diet high in cholesterol. Because young zebrafish are transparent, the researchers were able to study vascular lipid accumulation, lipid oxidation, and uptake of oxidized LDL by macrophages – all in live animals.

To be able to see oxidized LDL, the researchers inserted a gene encoding an antibody that recognizes oxidized LDL, conjugated with green fluorescent protein (GFP), into the zebrafish genome. The antibody, called IK17, was originally cloned from a patient with severe coronary heart disease by the group of scientists led by Joseph L. Witztum, MD, and Sotirios Tsimikas, MD, also of the UCSD Department of Medicine.

The new gene was silent in zebrafish until their tank water was warmed to 99ºF (37ºC.) After one hour of this "heat shock," IK17-GFP was produced and eventually bound to its target – oxidized LDL in the vascular wall. The green glow of GFP was clearly seen in tiny, live zebrafish under microscope. It was then put back into the fish tank until next picture-taking session.

"Using this technique, we were able to measure the time course of oxidized lipid accumulation in the vascular wall and visualize the effects of treatment with an antioxidant drug, and saw that it reversed the accumulation of oxidized LDL," said the paper's first author Longhou Fang, PhD. "The same therapeutic effect was achieved by switching the zebrafish back to a diet low in cholesterol. We saw the results in just 10 days working with the zebrafish model. A similar experiment in mice took 6 months to complete."

"I see this cholesterol-fed, transgenic zebrafish model as a novel way to study early vascular lipid accumulation and lipoprotein oxidation, the processes that lead to heart disease in humans," said Miller. "Since it is relatively easy and cost-effective to establish and maintain new transgenic zebrafish lines, this offers an in-vivo test for new antioxidants and other drug candidates that could affect development of human atherosclerosis."

Additional contributors to the study are Simone R. Green, Ji Sun Baek, Sang-Hak Lee, and Elena Deer of UC San Diego Department of Medicine; and Felix Ellett and Graham J. Lieschke of the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia and the Australian Regenerative Medicine Institute at Monash University.

Funding was provided by the National Institutes of Health, the UC Tobacco-Related Disease Program, the UC San Diego Clinical and Translational Institute and the Leducq Foundation.

Miller and Fang are inventors on patents and patent applications for the potential commercial use of hypercholesterolemic zebrafish, and Witztum and Tsmikas are inventors on patents and patent applications for potential commercial use of antibodies to oxidized LDL, all held by UC San Diego.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Unravelling the genetics of fungal fratricide
16.10.2018 | Uppsala University

nachricht Fungal weapon turns against the maker
16.10.2018 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>