Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique allows simultaneous tracking of gene expression and movement

16.12.2008
Flies expressing green fluorescent protein (GFP) in their retina cells or other tissues can be tracked by specially modified video cameras, creating a real time computer record of movement and gene expression.

The new technique, described in the open access journal BMC Biotechnology, will allow detailed analyses of correlations between behavior, gene expression and aging.

John Tower led a team of researchers from the University of Southern California, Los Angeles, who carried out the fluorescent experiments in Drosophila flies. When the flies are illuminated with blue light, the authors’ video tracking system allows tissue-specific GFP expression to be visualized, then quantified and correlated with 3D animal movement in real time. According to Tower, “These methods allow specific temporal patterns of gene expression to be correlated with temporal patterns of animal activity, behavior and mortality”.

The green fluorescent protein gene is isolated from the jellyfish Aequorea victoria and encodes a protein that absorbs blue light and emits green light. When a fly expressing GFP is illuminated by blue LEDs, filtered cameras can detect the green fluorescence that results and the fly’s movement can be tracked at a rate of 60 frames per second. By linking the expression of GFP to the expression of other reporter genes, it is possible to determine when these genes are on or off, and how this is associated with a fly’s behavior.

Tower said, ”A large number of strains exist where GFP or some other auto-fluorescent protein is used as a reporter for specific gene expression in Drosophila and other organisms. -Our methods should be readily adaptable to such reagents, for example we have recently been successful in tracking DsRED fluorescent flies”.

Graeme Baldwin | alfa
Further information:
http://www.biomedcentral.com/bmcbiotechnol/
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>