Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique permits development of enzyme tool kit

11.05.2010
An Arizona State University graduate student, Jinglin Fu, in collaboration with Biodesign Institute researchers Neal Woodbury and Stephen Albert Johnston, has pioneered a technique that improves on scientists’ ability to harness and modulate enzyme activity.

The new approach, reported in the Journal of the American Chemical Society (published online on Apr. 21st, 2010) , could have wide applicability for designing a range of industrial catalysts, health care diagnostics and therapies centered on understanding the control of enzymatic activity.

Enzymes, key catalysts that speed up the reactions inside every cell, are critical for life. As Neal Woodbury, chief scientist the Biodesign Institute at Arizona State University notes, “all the processes that happen inside of your body, essentially without exception, are run by enzymes.” Enzymes are also a prized tool in biomedical research, aiding the development of diagnostic tests and therapeutics for a range of human diseases.

But studying the role of enzymes can be tricky. One approach has been to use a specialized platform known as a microarray—where glass slides are deposited with 10,000 protein fragments, called peptides, that are screened for their ability to react with specific enzymes and alter their activity. “On the microarray, you can screen thousands of molecules at the same time,” Fu says, allowing the simultaneous monitoring of the peptide-enzyme binding and the change in enzyme activity at each spot on the array.

But there is a problem with this approach, that has so far hampered enzyme research. “When you try to monitor the chemical reaction that the enzyme catalyzes in the microarray, the molecule generated by the enzyme reaction quickly diffuses away, causing serious cross-contamination between spots on the array,” Fu explains. To solve this problem, Fu applied polyvinyl alcohol (PVA)—a thick, viscous and clear polymer— to the microarray slide to limit the diffusion of molecules and hold the reactions in place, preventing contamination.

In the current study, Fu’s team was able to observe the effects that peptides had on the activity of three broad classes of enzymes. In some cases, peptides blocked the activity of an enzyme but in others, peptides acted to alter the whole structure of the enzyme—often in unanticipated ways—allowing it to function differently.

“What Jinglin has invented,” Woodbury stresses, “is a way of finding a peptide that will allow us to both put an enzyme in a particular place and modulate its activity. It allows us to begin to group different enzymes according to function.” In addition to possible biomedical applications, the enzyme tool kit made possible through the group’s research could be applied to modulating enzymes for a variety of industrial purposes, for new detergents or pharmaceuticals. Further, the strategy is not limited to peptides. It can theoretically be applied to virtually any small molecule suitable for an array, making the technique extremely versatile.

Written by Richard Harth
Biodesign Institute Science Writer
richard.harth@asu.edu

Richard Harth | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>