New target to fight HIV infection identified

A mutant of an immune cell protein called ADAP (adhesion and degranulation-promoting adaptor protein) is able to block infection by HIV-1 (human immunodeficiency virus 1), new University of Cambridge research reveals. The researchers, who were funded by the Wellcome Trust, believe that their discovery will lead to new ways of combatting HIV.

Professor Chris Rudd from the Department of Pathology, who led the research, said: “One exciting aspect about this new target for HIV intervention is that we should be able to fight HIV without compromising the immune system's ability to battle infections.”

HIV infections cause a severe and selective depletion of T-cells, a type of white blood cell that plays a major role in the immune system. Infections result when the HIV virus enters T-cells of the immune system by binding to the surface receptor CD4. Once it enters the cell, it replicates or reproduces itself rapidly, and then spreads to other T-cells by releasing the virus. This spread can occur between an infected T-cell and an uninfected attached T-cell. The researchers found that an ADAP mutant is able to interfere with HIV-1 infection by targeting two events, by reducing the replication of the virus, and the contact between infected and uninfected T-cells.

Professor Rudd added: “The ADAP mutant is potent in its interference of HIV-1 transmission because it targets simultaneously two critical events, viral replication and the spread of the virus from one T-cell to another. One therapeutic possibility is the reconstitution of infected individuals with T-cells expressing the mutant that are relatively resistant to HIV infection and which can react against the virus.”

According the World Health Organisation, there are currently 35.3 million people living with HIV. Although the number of new HIV infections has dropped, it remains a major global public health issue. In the past three decades, it has killed more than 25 million people.

For additional information please contact:

Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk
Notes to editors:
1. The paper 'Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors' is published in the journal BioMed Central – http://www.retrovirology.com/content/10/1/101

2. The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

Media Contact

Genevieve Maul EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors