Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tarantulas shoot silk from feet

16.05.2011
Climbing is possibly one of the riskiest things an adult tarantula can do. Weighing in at anything up to 50gm, the dry attachment systems that keep daintier spiders firmly anchored are on the verge of failure in these colossal arachnids.

'The animals are very delicate. They wouldn't survive a fall from any height,' explains Claire Rind from the University of Newcastle, UK. In 2006, Stanislav Gorb and his colleagues published a paper in Nature suggesting that tarantulas may save themselves from falling by releasing silk threads from their feet.

However, this was quickly refuted by another group that could find no evidence of the silk. Fascinated by spiders and intrigued by the scientific controversy, Rind decided this was too good a challenge to pass up and discovered that tarantulas shoot silk from their feet when they lose their footing. She publishes her results in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/11/1874.abstract.

Teaming up with undergraduate Luke Birkett, Rind tested how well three ground-dwelling Chilean rose tarantulas kept their footing on a vertical surface. Gently placing one of the animals in a very clean aquarium with microscope slides on the floor, the duo cautiously upended the aquarium to see if the tarantula could hang on. 'Given that people said tarantulas couldn't stay on a vertical surface, we didn't want to find that they were right,' remembers Rind. But the spider didn't fall, so the duo gave the aquarium a gentle shake. The tarantula slipped slightly, but soon regained its footing. So the spider had held on against the odds, but would Rind find silk on the microscope slides?

Looking at the glass by eye, Rind couldn't see anything, but when she and Birkett looked closely under a microscope, they found minute threads of silk attached to the microscope slide where the spider had stood before slipping.

Next, Rind had to prove that the silk had come from the spiders' feet and not their web-spinning spinnerets. Filming the Chilean rose tarantulas as they were rotated vertically, Rind, Benjamin-James Duncan and Alexander Ranken disregarded any tests where other parts of the spiders' bodies contacted the glass and confirmed that the feet were the source of the silk. Also, the arachnids only produced their safety threads when they slipped.

But where on the spiders' feet was the silk coming from? Having collected all of the moulted exoskeletons from her Mexican flame knee tarantula, Fluffy, when she was young, Rind looked at them with a microscope and could see minute threads of silk protruding from microscopic hairs on Fluffy's feet. Next, the team took a closer look at moults from Fluffy, the Chilean rose tarantulas and Indian ornamental tarantulas with scanning electron microscopy and saw minute reinforced silk-producing spigots, which extended beyond the microscopic attachment hairs on the spiders' feet, widely distributed across the foot's surface. Rind also looked at the tarantula family tree, and found that all three species were only distantly related, so probably all tarantula feet produce the life-saving silk threads.

Finally, having noticed the distribution of the spigots, Rind realised that tarantulas could be the missing link between the first silk-producing spiders and modern web spinners. She explains that the spread of spigots on the tarantula's foot resembled the distribution of the silk spigots on the abdomen of the first silk spinner, the extinct Attercopus spider from 386 million years ago. The modern tarantula's spigots also looked more similar to mechanosensory hairs that are distributed over the spider's entire body, possibly making them an evolutionary intermediate in the development of silk spinning. So, not only has Fluffy settled a heated scientific debate but she also may be a link to the silk spinners of the past.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Rind, C., Birkett, C. L., Duncan, B.-J. A. and Ranken, A. J. (2011). Tarantulas cling to smooth vertical surfaces by secreting silk from their feet. J. Exp. Biol. 214, 1874-1879.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>