Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss-Japanese Research Suggests Origins of Key Cells in the Thymus

31.05.2013
Medullary thymic epithelial cells (mTECs) allow the thymus to ensure that the body’s T cells are able to distinguish between potentially harmful foreign antigens and those that are produced by the body itself.

A Swiss-Japanese research team suggests that mTECs do not share a common progenitor with cortical-thymic TECs (cTECs) that produce T cells, but may actually evolve from them.

T-lymphocytes, or T cells, are a principal component of the body’s adaptive immune system. Together, these cells express a large repertoire of antigen specific receptors that recognise foreign material derived, for example, from pathogens and tumour cells. The generation of these antigen receptors occurs during T cell development in the thymus.

This constitutes, however, a random process that also includes the formation of antigen receptors which respond well to the body’s own proteins, so-called self-antigens. To prevent T cells bearing a self-reactive antigen receptor to exit from the thymus to the rest of the body where they may cause autoimmunity, a mechanism is in place that involves mTECs. These specialised thymic epithelial cells express most of the body’s self-antigens. T cells that recognise their specific antigen presented by mTECs will undergo a process of programmed cell death and are consequently deleted in the thymus.

Cross-Country Partnership

Very little is presently known about how cTECs and mTECs develop, or how they relate to each other. A Swiss-Japanese research team now reports that mTECs derive from cells that already express β5t, a proteasome subunit that is densely concentrated in cTECs and no other cell types, including mTECs themselves. This finding, which is published in the May 27-30, 2013 edition of PNAS, suggests that mTECs may evolve from cTECs. This finding has not only implications for how mTECs develop, but also how they may have evolved.

The research project was led in Switzerland by Prof. Georg Holländer, Professor of Paediatric Immunology at the University of Basel and Action Research Professor of Paediatrics at the University of Oxford. In Japan, the project was led by Prof. Yousuke Takahama of the Institute for Genome Research at the University of Tokushima, which initially discovered the β5t proteasome subunit. Dr. Izumi Ohigashi of the Institute for Genome Research at the University of Tokushima and Dr. Saulius Zuklys at the University Children’s Hospital of Basel serve as first authors.

Broad Potential

Professor Holländer believes that the benefits of a better understanding of the origins and functions of mTECs and cTECs extend well beyond basic research. The team’s findings suggest that evolutionary pressures have caused the body to check the quality of T cells that it produces. The T cell antigen receptor repertoire in evolutionary older species have a receptor, and did not require the body to implement quality control – but as the capacity developed to produce a seemingly infinite number of T cell antigen receptors the vital need to control their specificities has arisen. For this purpose the body may have “hijacked” existing cells, namely cTECs. Holländer also believes that the findings could inform attempts to reconstruct or develop in-vitro thymuses, which could in turn be used to help people who lack a normal thymus function because of inborn or acquired defects. “You can fix things if you know how they are formed in the first place,” he claims.

The research was supported by Grants-In-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science, and by a Strategic Japanese-Swiss Cooperative Program on Molecular Medical Research from the Japan Science and Technology Agency and the Federal Institute of Technology (ETH)-Zürich.

Original Citation

Izumi Ohigashi, Saulius Zuklys, Mie Sakata, Carlos E. Mayer, Saule Zhanybekova, Shigeo Murata, Keiji Tanaka, Georg Holländer, and Yousuke Takahama.
Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells.
Proceedings of the National Academy of Sciences of the United States of America, May 27-May 31, 2013. doi:10.1073/pnas.1301799110

Further Information

Professor Georg Holländer, Department of Biomedicine, University of Basel, Mattenstrasse 28 4058 Basel, Tel. +41 61 695 30 69, e-mail: georg-a.hollaender@unibas.ch

Professor Yousuke Takahama, Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, 3-18-15 Kuramoto, Tokushima, Japan 770-8503 Tel. +81 88 633 9452, e-mail: takahama@genome.tokushima-u.ac.jp

Anne Zimmermann | Universität Basel
Further information:
http://www.pnas.org/content/early/2013/05/28/1301799110.abstract
http://biomedizin.unibas.ch/research/research-group-details/home/researchgroup/pediatric-immunology/

More articles from Life Sciences:

nachricht Novel carbon source sustains deep-sea microorganism communities
18.09.2018 | King Abdullah University of Science & Technology (KAUST)

nachricht New insights into DNA phase separation
18.09.2018 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

Novel carbon source sustains deep-sea microorganism communities

18.09.2018 | Life Sciences

New insights into DNA phase separation

18.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>