Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange diet for methane consuming microorganisms

06.11.2012
Methane supplies the energy but is not the carbon source

Methane is formed under the absence of oxygen by natural biological and physical processes, e.g. in the sea floor. It is a much powerful green house gas than carbon dioxide.


Where the samples were taken: The Guaymas Basin on the West coast of Mexico.

Rita Dunker, MPI BRemen

Thanks to the activity of microorganisms this gas is inactivated, before it reaches the atmosphere and unfolds its harmful effects on Earth´s climate. Researchers from Bremen have proven that these microorganisms are quite picky about their diet. Now they have published their results in the Proceedings of the National Academy of Sciences (PNAS).

Carbon can be the basic structural element...

All life on Earth is based on carbon and its compounds. Cell components of all creatures contain carbon. The cell can take up this basic structural element via organic matter, or the cell build up its own organic matter from scratch, i.e. carbon dioxide. Researchers termed the first cells heterotrophs and the latter autotrophs. All plants, many bacteria and archaea are autotrophs, whereas all animals, including humans, are heterotrophs. The autotrophs form the basis for the life of the heterotrophs and all higher life by taking up inorganic carbon to form organic material.

…and can be the energy source

To keep the cellular systems running all cells need fuel. Methane can be such a fuel. When studying the methane consuming microbes discovered by Bremen scientists more than ten years ago it was assumed that they take the methane for filling up their energy tanks and using it as a carbon source, i.e, they were thought to be heterotrophs.

Now scientists from MARUM and the Max Planck Institute for Marine Microbiology show in their PNAS research paper that this is surprisingly not the case and the methane derived carbon is not used as a carbon source. “Our growth studies clearly show that the labeled carbon in the methane never showed up directly in the cell material, but experiments with labeled carbon from carbon dioxide did. It was quite surprising, ” said PNAS author Matthias Kellermann. The archaea in the consortia behave like it is expected for chemoautotrophs.
“Archaea and the sulfate reducing bacteria are living close together in consortia, which are growing extremely slow. And only in the newly synthesized cell material we could find the answer for the question, from where the carbon originates,” adds Kai-Uwe Hinrichs, leader of the organic geochemistry group at MARUM.

Co-author Gunter Wegener from the Max Planck Institute concludes: ”With our new knowledge we can optimize our studies about the inactivation of methane in nature. Our surprising results tell us that we still know little details of this globally important process.”

Samples were retrieved from the Guaymas Basin on the West coast of Mexico from a depth of more the 2000 meters using the US diving submersible Alvin .

Manfred Schlösser

Further informations/ photo material/Interviews:
Dr. Manfred Schloesser, +49 421 2028704, mschloes mpi-bremen.de
Dr. Rita Dunker, +49 421 2028856, rdunker mpi-bremen.de
Albert Gerdes, +49 421 21865540, agerdesmarum.de

Institutions

Max Planck Institute for Marine Microbiology, Bremen
MARUM – Center for Marine environmental Research at the University of Bremen

Original article
Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities
Matthias Y. Kellermann, Gunter Wegener, Marcus Elvert, Marcos Yukio Yoshinaga, Yu-Shih Lin,
Thomas Holler, Xavier Prieto Mollar, Katrin Knittel, and Kai-Uwe Hinrichs
PNAS doi/10.1073/pnas.1208795109

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de/
http://www.marum.de/

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>