Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells Battle for Space

08.12.2009
The body is a battle zone. Cells constantly compete with one another for space and dominance.

Though the manner in which some cells win this competition is well known to be the survival of the fittest, how stem cells duke it out for space and survival is not as clear. A study on fruit flies published in the October 2 issue of Science by Johns Hopkins researchers describes how stem cells win this battle by literally sticking around.

“Our work exemplifies how one signal coordinately maintains two types of stem cells in a single niche, or microenvironment,” says Erika Matunis, Ph.D., associate professor of cell biology at the Johns Hopkins School of Medicine. “What we found may emerge as common themes of mammalian stem cell niches as they become better characterized.”

To tackle the stem cell competition quandary, the team looked at fruit fly testes where two different stem cells exist: germline stem cells which give rise to sperm, and somatic stem cells which develop into non-reproductive cell types.

Using genetics, the researchers grew flies lacking the SOCS protein, which controls other molecules that promote stem cell growth. SOCS normally ensures that the right numbers of stem cells are present in the stem cell niche, a region at the far end of the fly testis where new cells are born. In a normal testis, the germline stem cells are surrounded by somatic stem cells at a ratio of about one germline stem cell for every two somatic stem cells.

The researchers isolated testes from flies lacking SOCS and, under a microscope, counted the number of germline stem cells and somatic stem cells. They found that nearly half of the germline stem cells were gone and the somatic stem cells appeared to be occupying that space.

“The somatic stem cells almost look like they’ve invaded the niche area,” says Melanie Issigonis, a graduate student in the Biochemistry, Cellular, and Molecular Biology graduate program at Johns Hopkins. “I saw that image and said, ‘Wow, it’s right there. Germline stem cell loss.’”

To figure out where the lost germline stem cells went and how they lost the battle for space, the team returned to the microscope. This time, they examined the cells for whether they contained integrin, a protein that helps cells stick to each other. They found that somatic stem cells from flies lacking SOCS seemed to contain more integrin than somatic stem cells from flies with functional SOCS. According to Matunis, it’s the increase in integrin that allows somatic stem cells to gain the upper hand because they can stick to the niche better than neighboring germline stem cells can.

Though the somatic stem cells were invading the niche, germline stem cells were not dying. In the microscope images, the team found that all remaining germline stem cells still looked alive and healthy, but elbowed out of their niche by somatic stem cells. Says Matunis, no matter how healthy a germline stem cell is, if it cannot stick, it will eventually be outcompeted by the somatic cells and pushed all the way out of the niche. Issigonis found the discovery remarkable: “The germline stem cells are perfectly fine,” she says. “They’re just leaving the niche and differentiating.”

The team believes this model can be applied to other stem cell niches such as cancer. Just like the somatic stem cells overrunning the fly testes, cancer stem cells in mammalian systems become a danger when they become the stickiest cell in the niche. In both cases, the important control protein, SOCS, is lost. Knowing what is necessary for some stem cells to thrive and others to dwindle could have great importance to understanding the roots of stem cell diseases.

This study was funded by the National Institutes of Health and a grant from the March of Dimes.

Authors of the text were Melanie Issigonis, Margaret de Cuevas, Laurel Sandler, and Erika Matunis, all of Johns Hopkins, Natalia Tulina of University of Pennsylvania School of Medicine, and Crista Brawley of University of Chicago.

On the Web:
Erika Matunis
http://www.hopkinsmedicine.org/cellbio/dept/MatunisProfile.html
Department of Cell Biology at Johns Hopkins Medicine http://www.hopkinsmedicine.org/cellbio/dept/

Biochemistry, Cellular and Molecular Biology Graduate Program at Johns Hopkins http://biolchem.bs.jhmi.edu/bcmb/index.shtml

Science Magazine
http://www.sciencemag.org/

Meg Marquardt | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Scientists discovered 20 new gnat species in Brazil
24.09.2018 | Estonian Research Council

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>