Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SRNL demonstrates electrochemical techniques for monitoring microbial growth

04.12.2018

Savannah River National Laboratory, in collaboration with Clemson University, the University of South Carolina and Savannah River Consulting LLC, has demonstrated the use of electrochemical techniques to monitor the growth status and energy levels of microorganisms used in biotechnology industries. As published in a recent Applied Microbiology and Biotechnology Express article, the techniques monitor the microbes in real time, improving the cost-effectiveness of the results compared to conventional sampling and analysis.

Microorganisms are used in many industrial applications, including production of fuels, chemicals, pharmaceuticals, and foods (e.g., ethanol, acetate, biodegradable plastics, penicillin, and yogurt).


Electrochemical techniques are being used to define microorganisms as electrochemical entities and thereby provide opportunities to monitor microbial activity in real time, in-situ. This approach is expected to decrease analytical costs while providing an abundance of data for industrial bioprocesses.

Credit: Savannah River National Laboratory

Like all organisms, microorganisms use food sources such as sugars, proteins, and lipids to obtain organic carbon for growth as well as energy from electrons released during break-down of food sources.

A decline in the vigor of a microbial culture could be caused by a diminishing food source, presence of a growth inhibitor, or contamination from another culture. To avoid further decline, any such issue needs to be addressed promptly.

To ensure the microbes are performing optimally, their cell numbers and / or chemical byproducts must be monitored. The conventional approach is to take periodic samples from microbial cultures to analyze the growth status of the cells.

Hands-on sampling and analysis are time consuming, labor intensive, and costly, which may allow problems to persist for hours before they are detected.

This Savannah River National Lab-led research team has demonstrated a multi-faceted, automated approach to monitor the energy levels of microbes.

One part of the technology provides an alert when cellular energy levels decrease. With electrodes poised at a specific reducing potential, microbes in the culture can pull energy into their cells in the form of electrons from the electrodes held adjacent to the culture.

The small portion of the culture that contacts the electrodes serves as an early warning system for sub-optimal conditions. The energy taken into the microbes from the electrodes shows up on a computer screen as an increase in electrical current.

Because this electrochemical activity can be monitored as it happens, this technique can be used to maintain the right conditions for optimal microbial behavior.

The other portion of the technology uses electrochemical impedance to monitor the culture throughout the growth cycle. In this way the microbial culture can be defined with an equivalent electrical circuit.

The equivalent circuit can then be used to fit impedance data and provide valuable information about the culture that relates to the physiological status of the culture. This approach offers significant potential for decreasing analytical costs as well as automating bioprocesses.

###

This research was supported by Bioenergy Technologies Office, Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy. Authors of the paper are: Ariane L. Martin, Pongsarun Satjaritanun, Sirivatch Shimpalee, Blake A. Devivo, John Weidner, Scott Greenway, J. Michael Henson and Charles E. Turick.

The U.S. Department of Energy's Savannah River National Laboratory is a multidiscipline research and development center, where accomplished scientists and engineers solve the Nation's most challenging environmental and security problems. Working with partners, the laboratory protects the Nation by applying science to global security, the environment and the energy economy. Savannah River National Laboratory is managed for DOE's Office of Environmental Management by Savannah River Nuclear Solutions, a Fluor-led company whose members are Fluor Federal Services, Newport News Nuclear and Honeywell.

Links:

Media Contact

Paul Erwin
paul.erwin@srnl.doe.gov
803-646-0485

 @@SRNLab

http://srnl.doe.gov/ 

Paul Erwin | EurekAlert!
Further information:
http://dx.doi.org/10.1186/s13568-018-0692-2

More articles from Life Sciences:

nachricht New technique to identify phloem cells aids in the fight against citrus greening
04.12.2018 | Botanical Society of America

nachricht Great strides for carbon capture using earth-abundant elements as photocatalytic system
03.12.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

Im Focus: Successful second round of experiments with Wendelstein 7-X

The experiments conducted from July until November at the Wendelstein 7-X fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald have achieved higher values for the density and the energy content of the plasma and long discharge times of up to 100 seconds – record results for devices of the stellarator type. Meanwhile, the next round of the step-by-step upgrading of Wendelstein 7-X has begun. It is to equip the device for greater heating power and longer discharges. Wendelstein 7-X, the world’s largest fusion device of the stellarator type, is to investigate the suitability of this configuration for use in a power plant.

During the course of the step-by-step upgrading of Wendelstein 7-X, the plasma vessel was fitted with inner cladding since September of last year.

Im Focus: New process discovered: Mere sunlight can be used to eradicate pollutants in water

Advances in environmental technology: You don’t need complex filters and laser systems to destroy persistent pollutants in water. Chemists at Martin Luther University Halle-Wittenberg (MLU) have developed a new process that works using mere sunlight. The process is so simple that it can even be conducted outdoors under the most basic conditions. The chemists present their research in the journal “Chemistry - a European Journal”.

The chemists at MLU rely on electrons moving freely in water, so-called hydrated electrons, to degrade dissolved pollutants.

Im Focus: Ultracold quantum mix

The experimental investigation of ultracold quantum matter makes it possible to study quantum mechanical phenomena that are otherwise hardly accessible. A team led by the Innsbruck physicist Francesca Ferlaino has now succeeded for the first time in mixing quantum gases of the strongly magnetic elements Erbium and Dysprosium and creating a dipolar quantum mixture.

Only a few years ago it seemed unfeasible to extend the techniques of atom manipulation and deep cooling in the ultracold regime to many-valence-electron...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

 
Latest News

Lacquering before polishing - Technical Coatings for Additive Manufacturing

04.12.2018 | Materials Sciences

Mobile learning, artificial intelligence and digital training formats in science and research

04.12.2018 | Trade Fair News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>