Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SRNL demonstrates electrochemical techniques for monitoring microbial growth

04.12.2018

Savannah River National Laboratory, in collaboration with Clemson University, the University of South Carolina and Savannah River Consulting LLC, has demonstrated the use of electrochemical techniques to monitor the growth status and energy levels of microorganisms used in biotechnology industries. As published in a recent Applied Microbiology and Biotechnology Express article, the techniques monitor the microbes in real time, improving the cost-effectiveness of the results compared to conventional sampling and analysis.

Microorganisms are used in many industrial applications, including production of fuels, chemicals, pharmaceuticals, and foods (e.g., ethanol, acetate, biodegradable plastics, penicillin, and yogurt).


Electrochemical techniques are being used to define microorganisms as electrochemical entities and thereby provide opportunities to monitor microbial activity in real time, in-situ. This approach is expected to decrease analytical costs while providing an abundance of data for industrial bioprocesses.

Credit: Savannah River National Laboratory

Like all organisms, microorganisms use food sources such as sugars, proteins, and lipids to obtain organic carbon for growth as well as energy from electrons released during break-down of food sources.

A decline in the vigor of a microbial culture could be caused by a diminishing food source, presence of a growth inhibitor, or contamination from another culture. To avoid further decline, any such issue needs to be addressed promptly.

To ensure the microbes are performing optimally, their cell numbers and / or chemical byproducts must be monitored. The conventional approach is to take periodic samples from microbial cultures to analyze the growth status of the cells.

Hands-on sampling and analysis are time consuming, labor intensive, and costly, which may allow problems to persist for hours before they are detected.

This Savannah River National Lab-led research team has demonstrated a multi-faceted, automated approach to monitor the energy levels of microbes.

One part of the technology provides an alert when cellular energy levels decrease. With electrodes poised at a specific reducing potential, microbes in the culture can pull energy into their cells in the form of electrons from the electrodes held adjacent to the culture.

The small portion of the culture that contacts the electrodes serves as an early warning system for sub-optimal conditions. The energy taken into the microbes from the electrodes shows up on a computer screen as an increase in electrical current.

Because this electrochemical activity can be monitored as it happens, this technique can be used to maintain the right conditions for optimal microbial behavior.

The other portion of the technology uses electrochemical impedance to monitor the culture throughout the growth cycle. In this way the microbial culture can be defined with an equivalent electrical circuit.

The equivalent circuit can then be used to fit impedance data and provide valuable information about the culture that relates to the physiological status of the culture. This approach offers significant potential for decreasing analytical costs as well as automating bioprocesses.

###

This research was supported by Bioenergy Technologies Office, Office of Energy Efficiency & Renewable Energy, U.S. Department of Energy. Authors of the paper are: Ariane L. Martin, Pongsarun Satjaritanun, Sirivatch Shimpalee, Blake A. Devivo, John Weidner, Scott Greenway, J. Michael Henson and Charles E. Turick.

The U.S. Department of Energy's Savannah River National Laboratory is a multidiscipline research and development center, where accomplished scientists and engineers solve the Nation's most challenging environmental and security problems. Working with partners, the laboratory protects the Nation by applying science to global security, the environment and the energy economy. Savannah River National Laboratory is managed for DOE's Office of Environmental Management by Savannah River Nuclear Solutions, a Fluor-led company whose members are Fluor Federal Services, Newport News Nuclear and Honeywell.

Links:

Media Contact

Paul Erwin
paul.erwin@srnl.doe.gov
803-646-0485

 @@SRNLab

http://srnl.doe.gov/ 

Paul Erwin | EurekAlert!
Further information:
http://dx.doi.org/10.1186/s13568-018-0692-2

More articles from Life Sciences:

nachricht Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow
16.07.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>