Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silenced - Overcoming multidrug resistance in cancer cells by silencing genes with RNA

22.01.2014
Resistance of tumor cells toward multiple cytostatic drugs is a serious problem in cancer treatment.

In the journal Angewandte Chemie, a team of Chinese and American researchers has now introduced a new approach to gene therapy that could counter this problem: The gene that codes for resistance is “silenced” through the use of an ingenious nanocomplex.



Every cell in our body contains our complete genetic information. However, not all genes are used in every cell at all times. Regulatory processes are needed to determine when a gene should be read and transcribed to messenger-RNA (mRNA), and the corresponding protein built.

One such mechanism is RNA silencing. In this mechanism, short, specific, silencing RNA (siRNA) fragments bind to the mRNA to be silenced with participation from several enzyme complexes. The enzymes cleave the mRNA, preventing its translation into a protein. Gene therapies based on synthetic siRNA are under clinical development.

However, these siRNA drugs are directed toward the cellular silencing “machinery” and may disrupt natural gene regulation pathways, which results in side effects. In addition, they require a transport system to carry them through the cell membrane and to protect them from rapid degradation. Led by Min Yang at the Jiangsu Institute of Nuclear Medicine (Wuxi, China) and Xiaoyuan Chen at the National Institutes of Health (Bethesda, USA), the researchers have now developed an alternative approach that doesn’t have these disadvantages. It is based on a nanocomplex that already includes the required machinery and packaging.

The researchers chose to use gold nanoparticles as their support and transport system. They attached three components to the nanoparticles’ surfaces: 1) RNAse A, a robust enzyme that nonspecifically cleaves single-stranded RNA; 2) DNA oligonucleotides with a sequence selected to specifically bind the mRNA to be taken out of circulation; 3) A ligand that is designed to pilot the nanocomplex to the target cells – tumor cells in this case. The scientists chose Cys-tag EGF, a ligand that binds to a growth-hormone receptor present in significantly elevated quantities in the cell membranes of many tumors.

One important mechanism of multidrug resistance in tumor cells is the active expulsion of drugs by means of a special transport protein (Pgp). Administration of chemotherapy drugs triggers formation of a large number of these transporters, which effectively protect the tumor cells from the drugs.

In order to silence the gene that codes Pgp, the researchers incorporated DNA that recognizes the corresponding mRNA into the nanocomplexes.

They were thus able to observe cleavage of this mRNA, a reduction in the concentration of Pgp, and renewed sensitivity toward the chemotherapy drug doxorubicin in multidrug-resistant tumor cell lines. In addition to combating multidrug resistance, the new method should prove to be a generally useful approach for gene therapy.

About the Author
Dr. Xiaoyuan (Shawn) Chen is Senior Investigator and Chief of the Laboratory of Molecular Imaging and Nanomedicine (LOMIN) at the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health. His aims are to develop molecular imaging toolbox for better understanding of biology, early diagnosis of disease, monitoring therapy response, and guiding drug discovery/development. His lab puts special emphasis on high-sensitivity nanosensors for biomarker detection and theranostic nanomedicine for imaging, and gene and drug delivery.
Author: Xiaoyuan Chen, National Institutes of Health (NIH), Bethesda (USA), http://www.nibib.nih.gov/about-nibib/staff/xiaoyuan-shawn-chen
Title: Biomimetic RNA-Silencing Nanocomplexes: Overcoming Multidrug Resistance in Cancer Cells

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309985

Xiaoyuan Chen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>