Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No need to shrink guts to have a larger brain

10.11.2011
The so-called expensive-tissue hypothesis, which suggests a trade-off between the size of the brain and the size of the digestive tract, has been challenged by researchers at the University of Zurich.

They have shown that brains in mammals have grown over the course of evolution without the digestive organs having to become smaller. The researchers have further demonstrated that the potential to store fat often goes hand in hand with relatively small brains – except in humans, who owe their increased energy intake and correspondingly large brain to communal child care, better diet and their ability to walk upright.

Brain tissue is a major consumer of energy in the body. If an animal species evolves a larger brain than its ancestors, the increased need for energy can be met by either obtaining additional sources of food or by a trade-off with other functions in the body. In humans, the brain is three times larger and thus requires a lot more energy than that of our closest relatives, the great apes. Until now, the generally accepted theory for this condition was that early humans were able to redirect energy to their brains thanks to a reduced digestive tract. Zurich primatologists, however, have now disproved this theory, demonstrating that mammals with relatively large brains actually tend to have a somewhat bigger digestive tract.

Ana Navarrete, the first author on the study published today in Nature, has studied hundreds of carcasses from zoos and museums. “The data set contains a hundred species, from the stag to the shrew,” explains the PhD student. The scientists involved in the study then compared the size of the brain with the fat-free body mass. Senior author Karin Isler stresses that, “it is extremely important to take an animal’s adipose deposits into consideration as, in some species, these constitute up to half of the body mass in autumn.” But even compared with fat-free body mass, the size of the brain does not correlate negatively with the mass of other organs.

More fat, smaller brain
Nevertheless, the storage of fat plays a key role in brain size evolution. The researchers discovered another rather surprising correlation: the more fat an animal species can store, the smaller its brain. Although adipose tissue itself does not use much energy, fat animals need a lot of energy to carry extra weight, especially when climbing or running. This energy is then lacking for potential brain expansion. “It seems that large adipose deposits often come at the expense of mental flexibility,” says Karin Isler. “We humans are an exception, along with whales and seals – probably because, like swimming, our bipedalism doesn’t require much more energy even when we are a bit heavier.”
Interplay of energetic factors
The rapid increase in brain size and the associated increase in energy intake began about two million years ago in the genus Homo. Based on their extensive studies of animals, the Zurich researchers propose a scenario in which several energetic factors are involved: “In order to stabilize the brain’s energy supply on a higher level, prehistoric man needed an all-year, high-quality source of food, such as underground tubers or meat. As they no longer climbed every day, they perfected the art of walking upright. Even more important, however, is communal child care,” says Karin Isler. Because ape mothers do not receive any help, they can only raise an offspring every five to eight years. Thanks to communal care for mothers and children, humans can afford both: a huge brain and more frequent offspring.
Literature:
Ana F. Navarrete, Carel P. van Schaik, and Karin Isler. Energetics and the evolution of human brain size. Nature. November 9, 2011. doi:10.1038/nature10629
Contact information:
Dr. Karin Isler
Anthropological Institute and Museum
University of Zurich
Phone: +41 44 635 54 01
E-mail: kisler@aim.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>