Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex or food? Decision-making in single-cell organisms

17.10.2018

Unicellular diatoms are able to adapt their behavior to different external stimuli based on an evaluation of their own needs. This was discovered by scientists of the Friedrich Schiller University and the Max Planck Institute for Chemical Ecology in Jena, Germany, together with partners from Belgium. The algae depend on nutrients in order to reproduce. They also need sexual mates which they find when they follow pheromone traces. In experiments, Seminavis robusta diatoms directed their orientation either towards nutrient sources or mating partners, depending on the degree of starvation and the need to mate. The tiny organisms demonstrated in fact a primitive form of behavioral biology.

Diatoms are unicellular microalgae. They dominate marine phytoplankton, which is ubiquitous in our oceans. On shores and beaches, these algae can be observed as biofilms on rocks and other surfaces.


Diatom cells aggregate around a silicate-loaded bead. I

Karen Grace Bondoc, FSU Jena

Diatoms are not only the food source for many marine animals, but also responsible for an extremely important ecosystem service: They contribute significantly to global photosynthesis and thus to the production of oxygen on our planet. Moreover, they are discussed as possible produces of biofuels.

The diatom Seminavis robusta is an ideal model organism for behavioral studies in the lab: The cells respond to different environmental conditions and their sexuality can be controlled. The research group of Georg Pohnert, who is Professor of Instrumental Analytics/Bioorganic Analytics at Friedrich Schiller University and head of the Max Planck Fellow Group at the Max Planck Institute for Chemical Ecology, wanted to know whether the tiny organisms are able to make decisions about what they needed more urgently: food or sexual mates.

In order to find out, the scientists cultivated cells under different conditions. In particular, the cells were confronted with different amounts of nutrients and sex pheromones. Since diatoms primarily reproduce asexually by cell division, sexual reproduction may become necessary for their survival if the cells become smaller and smaller after continuous division.

After all, the cells die if they become too small and fall below a minimum size. Diatoms also search actively for nutrients they need for the formation of their cell walls. They can trace silicate minerals in their environment and move actively towards this food source. A recent study showed that they are attracted by the odor of the minerals (see press release The odor of stones, February 4, 2016).

"It is striking that even unicellular organisms that obviously lack a nervous system can process different stimuli and even evaluate their individual needs. Our study showed that diatoms can adapt their behavior flexibly to environmental changes.

They also responded differently depending on their need to sexually mate. We observed that the diatoms moved towards pheromones or food sources depending on how hungry they were for sex or nutrients. Until now, this kind of decision-making has only been attributed to higher organisms,” study leader Georg Pohnert summarizes the results.

The decision of one diatom does not only determine the fate of a single cell. Moreover, it is crucial for the dynamics of biofilms which is composed of communities of countless diatoms. Using mathematical models, the researchers calculated interactions between cell density and the availability of nutrients (silicate minerals) and mating partners (pheromones). Based on these results, the scientists are able to better explain how biofilms are organized and why they are often patchy and show certain patterns.

The scientist would now like to find out how the single-cell organisms perceive, process and evaluate chemical signals. “Our goal is to identify the corresponding receptors and signal processing pathways, but this will be a very complex endeavor given the fact that we know so little about these important micoralagae,” says Georg Pohnert.

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, Tel. +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download des Videos und hochaufgelösten Bildern über www.ice.mpg.de/ext/downloads2018.html

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Pohnert, Institut für Anorganische und Analytische Chemie, Friedrich- Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Tel. +49 3641 94-8170, E-Mail Georg.Pohnert@uni-jena.de

Originalpublikation:

Bondoc, K. G. V., Lembke, C., Lang, S. N., Germerodt, S., Schuster, S., Vyverman, W., Pohnert, G. (2018). Decision-making of the benthic diatom Seminavis robusta searching for inorganic nutrients and pheromones. The ISME Journal. DOI: 10.1038/s41396-018-0299-2
https://doi.org/10.1038/s41396-018-0299-2

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>