Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex or food? Decision-making in single-cell organisms

17.10.2018

Unicellular diatoms are able to adapt their behavior to different external stimuli based on an evaluation of their own needs. This was discovered by scientists of the Friedrich Schiller University and the Max Planck Institute for Chemical Ecology in Jena, Germany, together with partners from Belgium. The algae depend on nutrients in order to reproduce. They also need sexual mates which they find when they follow pheromone traces. In experiments, Seminavis robusta diatoms directed their orientation either towards nutrient sources or mating partners, depending on the degree of starvation and the need to mate. The tiny organisms demonstrated in fact a primitive form of behavioral biology.

Diatoms are unicellular microalgae. They dominate marine phytoplankton, which is ubiquitous in our oceans. On shores and beaches, these algae can be observed as biofilms on rocks and other surfaces.


Diatom cells aggregate around a silicate-loaded bead. I

Karen Grace Bondoc, FSU Jena

Diatoms are not only the food source for many marine animals, but also responsible for an extremely important ecosystem service: They contribute significantly to global photosynthesis and thus to the production of oxygen on our planet. Moreover, they are discussed as possible produces of biofuels.

The diatom Seminavis robusta is an ideal model organism for behavioral studies in the lab: The cells respond to different environmental conditions and their sexuality can be controlled. The research group of Georg Pohnert, who is Professor of Instrumental Analytics/Bioorganic Analytics at Friedrich Schiller University and head of the Max Planck Fellow Group at the Max Planck Institute for Chemical Ecology, wanted to know whether the tiny organisms are able to make decisions about what they needed more urgently: food or sexual mates.

In order to find out, the scientists cultivated cells under different conditions. In particular, the cells were confronted with different amounts of nutrients and sex pheromones. Since diatoms primarily reproduce asexually by cell division, sexual reproduction may become necessary for their survival if the cells become smaller and smaller after continuous division.

After all, the cells die if they become too small and fall below a minimum size. Diatoms also search actively for nutrients they need for the formation of their cell walls. They can trace silicate minerals in their environment and move actively towards this food source. A recent study showed that they are attracted by the odor of the minerals (see press release The odor of stones, February 4, 2016).

"It is striking that even unicellular organisms that obviously lack a nervous system can process different stimuli and even evaluate their individual needs. Our study showed that diatoms can adapt their behavior flexibly to environmental changes.

They also responded differently depending on their need to sexually mate. We observed that the diatoms moved towards pheromones or food sources depending on how hungry they were for sex or nutrients. Until now, this kind of decision-making has only been attributed to higher organisms,” study leader Georg Pohnert summarizes the results.

The decision of one diatom does not only determine the fate of a single cell. Moreover, it is crucial for the dynamics of biofilms which is composed of communities of countless diatoms. Using mathematical models, the researchers calculated interactions between cell density and the availability of nutrients (silicate minerals) and mating partners (pheromones). Based on these results, the scientists are able to better explain how biofilms are organized and why they are often patchy and show certain patterns.

The scientist would now like to find out how the single-cell organisms perceive, process and evaluate chemical signals. “Our goal is to identify the corresponding receptors and signal processing pathways, but this will be a very complex endeavor given the fact that we know so little about these important micoralagae,” says Georg Pohnert.

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, Tel. +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download des Videos und hochaufgelösten Bildern über www.ice.mpg.de/ext/downloads2018.html

Wissenschaftliche Ansprechpartner:

Prof. Dr. Georg Pohnert, Institut für Anorganische und Analytische Chemie, Friedrich- Schiller-Universität Jena, Lessingstraße 8, 07743 Jena, Tel. +49 3641 94-8170, E-Mail Georg.Pohnert@uni-jena.de

Originalpublikation:

Bondoc, K. G. V., Lembke, C., Lang, S. N., Germerodt, S., Schuster, S., Vyverman, W., Pohnert, G. (2018). Decision-making of the benthic diatom Seminavis robusta searching for inorganic nutrients and pheromones. The ISME Journal. DOI: 10.1038/s41396-018-0299-2
https://doi.org/10.1038/s41396-018-0299-2

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Organized chaos in the enzyme complex: surprising insights and new perspectives
06.07.2020 | Max-Planck-Institut für Entwicklungsbiologie

nachricht Gut bacteria improve type 2 diabetes risk prediction
06.07.2020 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>