Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research team uncovers chemical basis for extra 'quality control' in protein production

11.12.2009
Nature's solution to age-old chemical paradox provides clues to health and disease

Even small errors made by cells during protein production can have profound disease effects, and nature has developed ways to uncover these mistakes and correct them. Though in the case of one essential protein building block—the amino acid alanine—nature has been extra careful, developing not one, but two checkpoints in her effort to make sure that this component is used correctly.

Now, scientists at The Scripps Research Institute have discovered the chemical basis for why these extraordinary efforts are necessary. The work was published in the December 10, 2009 issue of the prestigious journal Nature.

"What is shown here with the 'serine paradox' is just the tip of the iceberg," said senior author Paul Schimmel, who is the Ernest and Jean Hahn Professor and Chair of Molecular Biology and Chemistry and a member of The Skaggs Institute for Chemical Biology at Scripps Research. "In the coming years, there will be an increasing awareness of the role of mistranslation in human diseases and of how nature has struggled to find solutions to attenuate mistranslation and its consequences."

Spelling with Amino Acids and Proofreading for Errors

As letters of the alphabet spell out words, when amino acids are linked to one another in a particular order they "spell out" proteins. When amino acids are put in the wrong order, "spelling errors" (mistranslations) occur, often with devastating consequences for the health of the organism.

Normally, small RNA molecules, called transfer RNAs (tRNAs), transport specific amino acids to the ribosomes, the protein factories of cells, so that amino acids can be added to their correct place in a growing chain. At the beginning of this process, 20 tRNA enzymes, one for each of the 20 common amino acids, select the proper amino acid to be transported by a tRNA and join them together.

However, as Senior Research Associate Min Guo of the Schimmel-Yang lab, who is first author of the new paper, noted, "Sometimes there are mistakes. Where there is supposed to be alanine, there is a serine or glycine instead."

In 2006, the Schimmel-Yang lab contributed to research led by the Ackerman group at Jackson Laboratories that showed the consequences of this particular mistake in protein building for a strain of mutant mice. When the enzyme that adds the amino acid alanine to tRNAs—called alanyl-tRNA synthetase (AlaRS)—mischarges its tRNA (tRNA Ala), the error leads to the accumulation of misfolded proteins and the mice display severe neurological and other defects. Another study by the Schimmel-Yang lab showed that E. coli bacteria with a similar mutation become very sensitive to serine and glycine, dying when these amino acids (but not others) are added to the culture.

Clearly, nature has a vested interest in avoiding such costly errors.

In fact, the Schimmel-Yang group showed in a Nature and a Science paper published in January 2008 and August 2009, respectively, that nature plays it extra safe with the quality control of alanine in protein production. Alanine's tRNA synthetase, AlaRS, not only loads the tRNA with an amino acid, but also checks to make sure it attached the right one. In addition, many organisms, from bacteria to humans, have an extra freestanding "spellchecker" molecule—in the form of a protein called AlaXp—to ensure that alanine is not confused with other amino acids.

"The editing function is redundant," said Guo. "This leads to several questions: Why are the cells so sensitive to alanine mistakes in particular? Why did AlaXps evolve so early? And why are redundant proteins still present that you supposedly don't need?"

A Case of Mistaken Identity

In the new Nature paper, the scientists used a variety of techniques, including x-ray cryatallography and kinetic and mutational analysis, to answer these questions.

The results showed that one reason for the difficulty AlaRS has in distinguishing alanine from serine and glycine is that the active site on the AlaRS molecule is a large, flexible pocket. Instead of acting as a rigid lock for a single key, the cavity flexes to hold not only its target alanine, but also similar-size molecules serine and glycine.

But serine and glycine are not exactly the same size as alanine. That's where the "serine paradox" comes in. Glycine is smaller and serine is larger than alanine. Current theory would not predict that molecules that are both larger and smaller than alanine would be a problem for AlaRS.

"The reason we call it a paradox is because none of the other tRNA synthesases have a problem mis-activating both a smaller and a bigger amino acid," said Guo. "Theoretically, the tRNA synthesases should have the most problem recognizing a smaller amino acid, because a smaller one can also go into the binding pocket. The smaller one is easy to understand. Now we explain the bigger one."

Unexpectedly, the new study's results also revealed that within AlaRS's binding pocket the acidic group of Asp235 creates an extra hydrogen bond with the larger serine molecule. This additional bond turns out to be the major force that helps to secure the misplaced serine in the pocket, despite its larger size. However, x-ray analysis showed that Asp235 is also critical for holding the amino group of alanine. Attempts by the Schimmel-Yang lab (and also most likely by eons of evolution) to replace Asp235 with another residue failed. In fact, the scientists found that to make a change that would eliminate the interaction with serine would also impact negatively on the interaction with the correct amino acid, alanine. So, nature developed another solution by creating AlaXp, which is specifically designed to provide a second check and eliminate any serine that is attached to tRNA (Ala).

Together, AlaRS's large, flexible pocket and the additional hydrogen bond with serine explain the chemical basis for frequent confusion of glycine and serine for alanine and the need for additional checks to make sure that alanine, not one of its look-alikes, is incorporated into a protein when called for.

"Now we can understand why nature takes so much effort to invent two editing checkpoints," said Guo. "That's what is necessary to have the correct sequence of amino acids in a protein. To me, it's amazing that a single chemical feature can determine the fate of almost every organism on earth. Organisms from bacteria to humans share the same biological solution that nature found to this critical chemical problem."

In addition to Schimmel and Guo, authors of the paper are Yeeting E. Chong, Ryan Shapiro, Kirk Beebe, and Xiang-Lei Yang, all of Scripps Research.

This work was supported by a grant from the National Institutes of Health and by a fellowship from the National Foundation for Cancer Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: AlaXp Asp235 Nature Immunology RNA amino acid amino acid alanine synthetic biology

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>