Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tailor cell surface targeting system to hit organelle ZIP codes

18.04.2012
Engineered particles tied to penetratin discover, deliver ligands for mitochondria, ribosomes

Scientists who developed a technology for identifying and targeting unique protein receptor ZIP Codes on the cellular surface have found a way to penetrate the outer membrane and deliver engineered particles - called iPhage - to organelles inside the cell.

In a paper published today online in Nature Communications, the team led by researchers at The University of Texas MD Anderson Cancer Center reports packaging the phage particles with a peptide called penetratin to reach inside the cell.

This new capacity was used to screen for peptide ligands - binding agents - that connect to receptors on mitochondria, which generate a cell's energy, and ribosomes, which process mRNA to make proteins.

The team found a peptide that binds to a specific ribosomal protein called RPL29 which, when delivered with penetratin, disrupts ribosomal function and kills cells. Cell survival was reduced in both malignant and non-malignant cells and in both mouse and human cell lines.

"We provided proof-of-concept for a direct intracellular ligand-receptor screening technology, which is clearly an unmet need in cancer biology, along with the discovery of an organelle ZIP Code that mediates cell death," said Renata Pasqualini, Ph.D., co-senior author of the paper and a professor in MD Anderson's David H. Koch Center for Applied Research of Genitourinary Cancers.

The RPL29 pathway is a new cell death pathway. The researchers found evidence of three types of cell death caused by disrupting the pathway with the new ligand.

"The molecular tool reported here along with its future ramifications will hopefully be of interest to targeted drug development, gene delivery, and mechanisms of human organelle diseases," said Wadih Arap, M.D., Ph.D., also of the Koch Center.

The iPhage screens for ligands inside the cell

Arap and Pasqualini pioneered a screening technique that exploits the existence of unique ZIP Codes in the vascular system to identify molecular targets and the ligands that can be used to selectively hit them.

They developed engineered viral particles, called phage, and packaged them with massive peptide libraries. When injected, these phage/peptide combinations bind to specific receptors in the blood vessels and organs. Cells are then fractionated and analyzed to discover which ligands bind to specific surface proteins.

Arap, Pasqualini and their colleagues have a number of targeted drugs in various stages of development based on screening and then delivery with the combinatorial particles.

The team wondered whether packaging the particles with penetratin, which is known to cross membranes without requiring a cellular receptor, would allow their technology to work inside of cells. "Penetratin makes a little bubble on the cell surface and the bubble goes in through the membrane," Arap said.

They dubbed the combination of penetratin and phage particles "internalizing phage," or iPhage. In a series of experiments, the team found:

iPhage successfully entered normal and malignant cells in both mouse and human cell lines while the engineered phage alone, or phage packaged with mutated penetratin, did not gain entry.

Connecting iPhage with the mitochondria localization signal (MLS) peptide resulted in a 10-fold concentration of MLS-iPhage in mitochondria compared to simple iPhage, showing that specific organelles could be targeted.

To screen for new ligands that might target specific organelles, they attached a random peptide library to iPhage particles and treated the KS1767 cells. Subsequent analysis found the peptide that binds to RPL29.

Packaged with penetratin, this "internalizing homing peptide" with the ungainly name YKWYYRGAA killed 75 percent of cells in culture while the peptide alone or penetratin alone killed virtually none.

Signs of apoptotic, autophagic and necrotic cell death were found with electron microscopy in cells killed by the YKWYYRGAA-penetratin combination.

Future studies will be needed to understand the complex cell death mechanism caused by the combination.

The study was funded by grants from the National Institutes of Health, the National Cancer Institute, the U.S. Department of Defense, by awards from AngelWorks, the Gilson-Longenbaugh Foundation, the Marcus Foundation, Inc., and MD Anderson's Odyssey Scholar program.

The University of Texas System, Arap and Pasqualini have equity in Alvos Therapeutics and Ablaris Therapeutics, MD Anderson manages and monitors these arrangements in accordance with its conflict-of-interest policy.

Co-authors with Arap and Pasqualini are co-first author Roberto Rangel and Liliana Guzman-Rojas, Fernanda Staquicini, Hitomi Hosoya, E. Magda Barbu, Michael Ozawa, Jing Nie and Erkki Koivunen, all of MD Anderson's Koch Center; Lucia le Roux and Juri Gelovani of MD Anderson's Department of Experimental Diagnostic Imaging; Kenneth Dunner Jr. and Robert Langley of MD Anderson's Department of Cancer Biology; E. Helene Sage of the Benaroya Research Institute at Virginia Mason in Seattle; Roy Lobb of Alvos Therapeutics, Waltham, Mass.; and Richard Sidman of Harvard Medical School and Beth Israel-Deaconess Medical Center in Boston.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>