Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists initiate first ethical guidelines for organs cultivated in vitro

20.01.2017

In the latest edition of the professional journal “Science”, Jürgen Knoblich, a leading authority on stem cells and deputy director of the IMBA (Institute for Molecular Biotechnology of the Austrian Academy of Sciences), together with international experts, presents a first ethical guideline for research into human organ models. In the article, he also argues for critical and responsible engagement with the new technology.

Organ models, which are cultivated in the laboratory from human stem cells and grow into living tissue, are one of the most important scientific breakthroughs of recent years. Scientists, patients and the wider public have high hopes for this emerging field of research, as so-called “organoids” have a huge potential in terms of research and modern medicine.


Ein Organoid ermöglicht erstaunliche Einblicke in die frühe Entwicklung des menschlichen Gehirns: an dem 49 Tage alten Gehirnmodell sind bereits erste Regionen der Hirnrinde angelegt.

In-vitro organ models allow complex organ development studies and pathogenetic analyses to be carried out directly in human tissue. New substances and therapies can be tested on human material much more quickly using this technology.

Regenerative medical practice could conceivably cultivate the required tissue in the laboratory from the cells of a patient and, lessen dependency on organ donations. The use of organoids could also significantly reduce the need for animal experiments, although biologists believe these cannot be completely eliminated in the foreseeable future.

Organoids – high hopes and bioethical dilemmas

From an ethical perspective, this new technology raises a whole range of issues. These include important caveats in relation to the use of human embryonic stem cells or the application of gene therapies to prevent or treat diseases. Jürgen Knoblich believes that “the development of organoids is unexplored scientific territory. As a researcher, I am fascinated by the huge potential of this technology.

However, I also believe it’s my job to actively promote dialogue around responsible research and to engage the wider public in the discussion”. In 2013, the stem cell specialist made scientific headlines worldwide with his laboratory-cultivated brain models.

In the latest policy statement issued in collaboration with the immunologist and geneticist Hans Clevers and the bioethicist and Member of the Dutch Parliament, Annelien Bredenoord, the researchers also examined for the first time the most important ethical dimensions of organoid research. According to Knoblich, “we hope that our work has created a solid foundation for the establishment of framework conditions for responsible engagement with this new technology”.

Weitere Informationen:

Press pictures
http://de.imba.oeaw.ac.at/index.php?id=516

Mag. Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft
Further information:
http://www.imba.oeaw.ac.at

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>