Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Previously Unseen Effects of Protein Buildup in Diabetic Baboons' Pancreases

22.07.2009
Protein buildup changes the microenvironment of a key area of the pancreas, resulting in a hormone imbalance that ultimately leads to type 2 diabetes, according to a new study from The University of Texas Health Science Center at San Antonio and collaborating institutions.

Undesirable protein deposits in the islets of Langerhans, the area of the pancreas that makes glucose-controlling hormones, are increased even when blood sugar levels are barely above normal, according to a newly published study by diabetes researchers from The University of Texas Health Science Center at San Antonio.

These deposits worsen as glucose increases, which is the key finding of the study, said Franco Folli, M.D., Ph.D., associate professor of medicine at the UT Health Science Center at San Antonio. He is senior author and principal investigator of the study article published in the July 20-24 online early edition of Proceedings of the National Academy of Sciences.

The researchers examined pancreatic tissue of 150 baboons that had died of natural causes, including diabetes. The team collaborated with the Southwest Foundation for Biomedical Research in San Antonio, which has a National Primate Research Center with a nonhuman primate model of type 2 diabetes mellitus. “Diabetes researchers, including us, have shown that baboons develop type 2 diabetes and obesity as it is observed in humans,” Dr. Folli said. “These conditions are a major health concern in Texas and the U.S.”

The deposits of a protein hormone, called Islet Amyloid Polypeptide (IAPP), somehow shift the microenvironment of the islets of Langerhans, the authors noted, making it toxic to cells that produce insulin, which lowers blood glucose levels. At the same time, the microenvironment promotes the replication of cells that produce a second hormone, glucagon, which raises blood glucose levels. The cells that produce insulin are called beta cells; the cells that produce glucagon are called alpha cells.

“For reasons we don’t fully understand, beta cells die in the amyloid-altered environment, but alpha cells proliferate,” Dr. Folli said. “It’s really an imbalance. Both activities are not normal and produce an undesirable effect, ultimately type 2 diabetes.”

Scientists have long known that glucagon is increased in type 2 diabetes, but had no explanation for this phenomenon. The team’s finding of alpha cell multiplication in the damaged islets of Langerhans is therefore intriguing. “Finally we have a very plausible explanation of the increased glucagon levels,” Dr. Folli said.

The study’s first author is Rodolfo Guardado-Mendoza M.D., Ph.D., postdoctoral fellow with Dr. Folli and Ralph Defronzo, M.D., in the Health Science Center’s Department of Medicine/ Division of Diabetes. Collaborating entities included the Southwest Foundation for Biomedical Research, the Health Science Center Department of Surgery, and Mexican and Italian centers.

A grant from the National Institutes of Health was recently awarded to Dr. Folli to support this research program, in collaboration with Anthony Comuzzie, Ph.D., of the Southwest Foundation for Biomedical Research.

About the UT Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>