Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Gene that Ties Stress to Obesity and Diabetes

22.04.2010
The constant stress that many are exposed to in our modern society may be taking a heavy toll: Anxiety disorders and depression, as well as metabolic (substance exchange) disorders, including obesity, type 2 diabetes, and arteriosclerosis, have all been linked to stress.

These problems are reaching epidemic proportions: Diabetes alone is expected to affect some 360 million people worldwide by the year 2030. While anyone who has ever gorged on chocolate before an important exam recognizes the tie between stress, changes in appetite, and anxiety-related behavior, the connection has lately been borne out by science, although the exact reasons for the connection aren’t crystal clear.

Dr. Alon Chen of the Weizmann Institute’s Department of Neurobiology and his research team have now discovered that changes in the activity of a single gene in the brain not only cause mice to exhibit anxious behavior, but also lead to metabolic changes that cause them to develop symptoms associated with type 2 diabetes. These findings were published online this week in the Proceedings of the National Academy of Sciences (PNAS).

All of the body’s systems are involved in the stress response, which evolved to deal with threats and danger. Behavioral changes tied to stress include heightened anxiety and concentration, while changes in the body include heat generation, changes in the metabolism of various substances, and even changes in food preferences. What ties all of these things together? The Weizmann team suspected that a protein known as Urocortin-3 (Ucn3) was involved. This protein is produced in certain brain cells – especially in times of stress – and it’s known to play a role in regulating the body’s stress response. These nerve cells have extensions that act as “highways” that speed Ucn3 on to two other sites in the brain: One, in the hypothalamus – the brain’s center for hormonal regulation of basic bodily functions – oversees, among other things, substance exchange and feelings of hunger and satiety; the other is involved in regulating behavior, including levels of anxiety. Nerve cells in both these areas have special receptors for Ucn3 on their surfaces, and the protein binds to these receptors to initiate the stress response.

The researchers developed a new, finely tuned method for influencing the activity of a single gene in one area in the brain, using it to increase the amounts of Ucn3 produced in just that location. They found that heightened levels of the protein produced two different effects: The anxiety-related behavior of the mice increased, and their bodies underwent metabolic changes. With excess Ucn3, their bodies burned more sugar and fewer fatty acids, and their metabolic rates sped up. These mice began to show signs of the first stages of type 2 diabetes: A drop in muscle sensitivity to insulin delayed sugar uptake by the cells, resulting in raised sugar levels in the blood. Their pancreases then produced extra insulin to make up for the perceived deficit.

“We showed that the actions of a single gene in just one part of the brain can have profound effects on the metabolism of the whole body,” says Dr. Chen. This mechanism, which appears to be a smoking gun tying stress levels to metabolic disease, might, in the future, point the way toward the treatment or prevention of a number of stress-related diseases.

Participating in the research were research students Yael Kuperman, Orna Issler, Limor Regev, Ifat Musseri, Inbal Navon, and Adi Neufeld-Cohen, along with Shosh Gil, all of the Weizmann Institute’s Department of Neurobiology.

Dr. Alon Chen’s research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the Carl and Micaela Einhorn-Dominic Brain Research Institute; the Croscill Home Fashions Charitable Trust; the Irwin Green Alzheimer’s Research Fund; Gerhard and Hannah Bacharach, Fort Lee, NJ; Mark Besen and the Pratt Foundation, Australia; Roberto and Renata Ruhman, Sao Paulo, Brazil; and Barry Wolfe, Woodland Hills, CA. Dr. Chen is the incumbent of the Philip Harris and Gerald Ronson Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>