Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover Key to Effective Meningitis Vaccine

10.03.2011
A study conducted by Children’s Hospital & Research Center Oakland and University of Massachusetts Medical Center scientists identifies a new mutant vaccine antigen for Neisseria meningitidis (also called meningococcus) that has the potential to improve vaccine development against dangerous bacterial infections including meningitis.

The study, authored by Children’s Hospital Oakland Research Institute (CHORI) scientists Dan Granoff, MD, and Peter Beernink, PhD, and colleagues at the University of Massachusetts Medical Center, Worcester MA, will be featured in the March 15, 2011 issue of the Journal of Immunology (published online February 16, 2011).

“It’s really quite gratifying to have a study like this that has direct translation into making better vaccines against infections, especially meningococcal disease,” said Dr. Granoff, Director of CHORI’s Center for Immunobiology and Vaccine Development. “This deadly disease affects hundreds of thousands of children throughout the world. Almost no other infection can kill a previously healthy child as fast as the meningococcus.”

Meningococci are bacteria responsible for causing meningitis and severe bloodstream infections. Young children and teenagers are particularly vulnerable. Even with the best treatment, 10 percent of those infected will not survive. About 20 percent of those who survive are left with long-term medical problems including loss of hearing, chronic seizures, and amputation of limbs.

While there are vaccines available for prevention of certain strains of the bacteria, there is no vaccine against “group B” strains, which account for approximately 40 percent of cases in the United States. Currently, there are two vaccines targeting group B strains in development. These vaccines utilize a novel antigen called factor H-binding protein (fHbp) to stimulate human immune responses against the bacteria. The fHbp antigen in the vaccines binds with human factor H (fH), a protein normally present in the bloodstream.

Dr. Granoff’s research, however, demonstrates that a simple change in the protein can greatly improve the efficacy of the vaccines. Because fH in animals differs from that in humans, genetically engineered mice were created in order to investigate the effect of fH binding on the fHbp vaccines.

A traditional animal study would not be able to capture the effects of this because fH in animals is slightly different than it is in humans. Dr. Granoff and his team got some help from genetically engineered mice.

When the mice with human fH (created by Sanjay Ram, MD, and Peter Rice, MD, at the University of Massachusetts in Worcester) were immunized, the fHbp antigen vaccine worked well in normal mice whose fH didn’t bind to the vaccine. But in the mice with human fH, the protective ability of the vaccine dropped four- to eight-fold. The more human fH a mouse had, the worse the level of protection the vaccine provided.

The same study, however, demonstrated a solution: Dr. Granoff and his colleagues showed that using an fHbp antigen with a slight mutation resulted in significant increases in protection.

“This mutant antigen has just one amino acid difference between it and the fHbp in the current vaccines, but that difference means that it no longer binds to human fH, and that resulted in much higher protective responses,” said Dr. Granoff.

In addition to significantly improving the current meningitis vaccines, the study also provides proof of principle that has the potential to be applied to vaccines against other bacteria that also utilize fH binding, like pneumococcus and Bordatella.

“Our study suggests that while a vaccine that actually targets fH binding proteins offers a unique opportunity to prevent disease, you probably need to develop forms of the vaccine that don’t bind to the host protein, said Dr. Granoff. “What we need to be looking for are mutants that make the antigen look like the fH binding proteins, but that remove the binding function.”

The study provides a solid foundation for the development of second generation meningococcal vaccines while also providing an approach for creating highly effective vaccines against other infectious bacteria.

About Children’s Hospital & Research Center Oakland
Children’s Hospital & Research Center Oakland is Northern California’s only independent not-for-profit regional medical center for children. Children’s Hospital Oakland is a national leader in many pediatric specialties and sub-specialties including hematology/oncology, neonatology, cardiology, orthopedics, sports medicine, and neurosurgery. The hospital is one of only two solely designated California Level 1 pediatric trauma centers with the largest pediatric inpatient critical care unit in the region. Children’s Hospital has 190 licensed beds, 201 hospital-based physicians in 30 specialties, more than 2,700 employees, and an annual operating budget of more than $350 million. Children’s is also a premier teaching hospital with an outstanding pediatric residency program and unique pediatric subspecialty fellowship programs.

Children’s research program, Children’s Hospital Oakland Research Institute (CHORI), is internationally renowned for taking state-of-the-art basic and clinical research and translating it into interventions for treating and preventing human diseases. CHORI has 300 members of its investigative staff, a budget of about $50 million, and is ranked among the nation’s top 10 research centers in National Institutes of Health funding to children’s hospitals. For more information, go to www.childrenshospitaloakland.org and www.chori.org.

Erin Goldsmith | Newswise Science News
Further information:
http://www.chori.org

More articles from Life Sciences:

nachricht How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration
14.11.2018 | Technische Universität München

nachricht NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure
14.11.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>