Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RIKEN chooses Helicos single molecule sequencing for global map of human promoters

08.12.2010
Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Researchers in Japan have launched FANTOM5, Functional Annotation of the Mammalian Genome, an international effort to globally map transcription initiation in every human cell type.

Joint research by RIKEN and Helicos BioSciences Corporation has played a key role in this project in adapting the Cap Analysis of Gene Expression (CAGE) technique, originally developed by RIKEN, to the HeliscopeTM single molecule sequencer. The use of HeliscopeTM for CAGE completely avoids PCR amplification biases, is quantitative over 5 orders of magnitude, is highly reproducible and can be carried out on as little as 100ng of total RNA.

The FANTOM project is the brainchild of Yoshihide Hayashizaki, who launched the first phase of the project in 2000. The cDNA encyclopedia of mouse full-length cDNAs generated in the FANTOM1, 2 and 3 projects remains to this day the largest collection of mammalian full-length cDNAs. FANTOM3 provided insights into non-coding RNAs and sense-antisense regulation. It also introduced the CAGE technique, developed by Piero Carninci, which generates sequence tags from the 5’ ends of capped RNAs.

In FANTOM4, CAGE was applied to an acute myeloid leukemia cell line undergoing monocytic differentiation. Using CAGE and transcription factor binding site predictions, a transcriptional regulatory model was generated which identified the key transcription factors involved in monocytic differentiation. FANTOM5 takes this one huge leap further by trying to generate transcriptional regulatory models to define every human cell type.

Motivating the project is the idea that to build a full understanding of transcriptional regulation in a human system, we need to collect as large a set of diverse cellular states as possible. Different cellular states will express different subsets of genes, which in turn must be regulated by different combinations of transcription factors. While a large collection of human primary cell types has already been amassed for the project, many more are still needed. Potential collaborators working on rare cell types are invited to contact Alistair Forrest, who is co-coordinating sample collection for the project.

For more information, please contact:
Dr. Yoshihide Hayashizaki
Director, RIKEN Omics Science Center
General Organizer, FANTOM5 Project
The FANTOM5 headquarter:
Alistair Forrest, Jun Kawai, Piero Carninci, Hideya Kawaji, Carsten Daub, Harukazu Suzuki
RIKEN Omics Science Center
TEL: +81-45-503-9222 FAX: +81-45-503-9216
Email: fantom5_enquiries@gsc.riken.jp
About RIKEN
RIKEN is a Japanese research institute that carries out high-level experimental and research work in a wide range of fields, including physics, chemistry, medical science, biology, and engineering, covering the entire range from basic research to practical applications. RIKEN was first organized in 1917 as a private research foundation and was reorganized in 2003 as an independent administrative institution under the Ministry of Education, Culture, Sports, Science and Technology.

RIKEN Omics Science Center is one of 12 research centers in RIKEN and its focus is on developing genome-wide technologies and applications thereof.

gro-pr | Research asia research news
Further information:
http://www.osc.riken.jp/english/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>