Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewiring a damaged brain

28.09.2010
Researchers in the Midwest are developing microelectronic circuitry to guide the growth of axons in a brain damaged by an exploding bomb, car crash or stroke. The goal is to rewire the brain connectivity and bypass the region damaged by trauma, in order to restore normal behavior and movement.

Pedram Mohseni, a professor of electrical engineering and computer science at Case Western Reserve University, and Randolph J. Nudo, a professor of molecular and integrative physiology at Kansas University Medical Center, believe repeated communications between distant neurons in the weeks after injury may spark long-reaching axons to form and connect.

Their work is inspired by the traumatic brain injuries suffered by ground troops in Afghanistan and Iraq. Despite improvements in helmets and armor, brain trauma continues to be the signature injury of these wars.

Brain damage carries a heavy toll that may include loss of coordination, balance, mobility, memory and problem-solving skills, with soldiers suffering from mood swings, depression, anxiety, aggression, social inappropriateness and emotional outbursts.

Scientists believe that as the brain develops, it naturally establishes and solidifies communication pathways between neurons that repeatedly fire together.

Nudo and others have found that during the month following injury the brain is redeveloping, with fibers that connect different parts of the brain undergoing extensive rewiring.

"The month following injury is a window of opportunity," Mohseni said. "We believe we can do this with an injured brain, which is very malleable."

Mohseni has been building a multichannel microelectronic device to bypass the gap left by injury. The device, which he calls a brain-machine-brain interface, includes a microchip on a circuit board smaller than a quarter. The microchip amplifies signals, called neural action potentials, produced by the neurons in one part of the brain and uses an algorithm to separate these signals – brain spike activity - from noise and other artifacts. Upon spike discrimination, the microchip sends a current pulse to stimulate neurons in another part of the brain, artificially connecting the two brain regions.

The miniature device currently remains outside the body, connecting to microelectrodes implanted in two regions of the brain.

Nudo has been studying and mapping brain connectivity in a rat model and developing a traumatic brain injury model to test the device and the neuroanatomical rewiring theory.

The researchers began collaborating in 2007. This month they received a $1.44 million grant from the Department of Defense Congressionally Directed Medical Research Program to continue their work and begin testing and improving the device.

During the next four years, they expect to understand the ability to rewire the brain in a rat model and to determine whether the technology is safe enough to test in non-human primates. If tests show the treatment is successful in helping recovery from traumatic brain injury, the researchers foresee the possibility of using the approach in patients 10 years from now.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>