Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers shed new light on catalyzed reactions

24.11.2008
Technique lets scientists view step-by-step breakdown of water pollutant

Rice University scientists on the hunt for a better way to clean up the stubborn pollutant TCE have created a method that lets them watch molecules break down on the surface of a catalyst as individual chemical bonds are formed and broken.

"We can see the vibrations of the bonds between the atoms of our molecules," said researcher Michael Wong. "By watching the way these vibrations change frequency and intensity with time, we can watch how molecules transform into other molecules step-by-step."

The research is available online in the Journal of the American Chemical Society.

This chemical sensing technique relies on nanoparticles consisting of gold and silica called nanoshells, invented 10 years ago at Rice by nanophotonics pioneer Naomi Halas. Nanoshells are about 20 times smaller than a red blood cell, and they can amplify light waves and focus them so tightly that scientists can use them to detect just a few molecules of a target chemical. Building catalysts directly on the surface of the nanoparticles themselves allows researchers to use the nanosensing capabilities of nanoshells to directly follow chemical reactions on the catalyst using light.

"Nanoshells are among the world's most effective chemical sensors, and this study reveals another area where they are uniquely valuable," said Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering, professor of chemistry and director of Rice's Laboratory for Nanophotonics. "We are aware of no other method that provides this level of detail about metal-catalyzed chemical reactions that run in water. Given the overwhelming interest in biofuels processing and other water-based reactions, we expect this to be a very useful tool in understanding these chemistries in more detail."

TCE, or trichloroethene, is a common solvent and one of the world's most pervasive and troublesome groundwater pollutants. A carcinogen, TCE is found at 60 percent of the contaminated waste sites on the Environmental Protection Agency's Superfund National Priorities List, and the Pentagon has estimated the cost of cleaning up TCE contamination at U.S. military bases to be in the billions.

Wong's research group developed a new palladium-gold catalyst several years ago that helps break TCE into nontoxic components -- unlike methods that just move TCE into the solid phase or gas phase. Early tests showed that the new catalyst worked remarkably quickly. In fact, it was more efficient than predicted, based on the best available theories. "The gold was definitely playing a role that we didn't fully understand," Wong said.

To learn more, Wong approached Halas and Rice theoretical chemist Gustavo Scuseria. Halas had worked for years to develop spectroscopic methods that used gold nanoshells for chemical detection and analysis. Whereas Wong's four-nanometer particles have a gold center covered by palladium atoms, he and graduate student Kimberly Heck wondered if they could cover Halas' much larger gold nanoshells with palladium atoms and then use the nanoshells to detect the elusive TCE chemical reaction. "We also didn't know how the TCE molecules decomposed on the catalyst surface," Wong said.

It took about a year and half to develop the technology and work out the experimental kinks, but Wong said the results were worth waiting for. The method uses surface-enhanced Raman spectroscopy to reveal the structure and makeup of molecules sitting on the palladium-covered gold nanoshell surface. Scuseria, Rice's Welch Professor of Chemistry, and postdoc Ben Janesko provided sophisticated theoretical calculations that helped match the vibrations with the type of chemical bonds.

"We think we parsed it out pretty well," Wong said of the hydrodechlorination reaction. "Millions of surface-bound molecules are reacting simultaneously, but with a lot of work we've uncovered at least seven chemical steps."

Ironically, he said, the reaction the team set out to analyze -- the breakdown of TCE into nontoxic ethane and chloride salts -- happens "way too fast" to be observed by the method. So, the team slowed down the reaction by using a similar molecule called DCE or 1,1-dichloroethene. In fact, DCE is what TCE can become after the catalyst breaks off the first chlorine atom, so by studying the DCE reaction, they are getting a good look at much of what happens with the TCE breakdown.

Wong said the study is helping him better understand TCE catalysis, but he and Halas each think their new method will be especially useful in providing a new level of detail for how molecules are transformed in chemical reactions that take place on catalytic surfaces.

"There was a question of whether we could do Raman spectroscopy and catalysis at the same time," Wong said. "There's no other method that lets you 'see' these catalyzed reactions in water while the reaction is happening, and some of the most interesting of these -- like the reactions needed to upgrade glycerol and cellulose into chemicals and fuels -- occur in water."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>