Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at the RUB and from Taiwan discover energy supply for protein secretion

10.05.2012
Out of the cell

Journal of Biological Chemistry: mechanism of bacterial transport system published

In order to interact with the environment, bacteria secrete a whole arsenal of proteins. Researchers have now found how one of the transportation systems used for this purpose – the type VI secretion system – works for the single-celled organism Agrobacterium tumefaciens. They have identified the relevant transport proteins and their energy suppliers.


Export mechanism: To get to the outside, Hcp has to get past two cell membranes. This is only possible if it forms a complex with the two membrane proteins TssM (grey) and TssL (white). The energy for the export is produced by the interaction of TssM with the energy storage molecule ATP. Figure: modified from the Journal of Biological Chemistry

With colleagues at the Academia Sinica in Taiwan, RUB biologist Prof. Dr. Franz Narberhaus describes the findings in the Journal of Biological Chemistry. “The proteins involved also occur in other secretion apparatuses” explains Narberhaus from the Department of Microbial Biology. “Therefore, the results contribute to the general understanding of the system.”

Protein arsenal for many purposes

Bacteria use secreted proteins to make nutrients available, to fend off competitors and to infect human, animal or plant host cells. “Agrobacterium tumefaciens is a fascinating bacterium. It can genetically modify plants and stimulate tumour formation”, says Narberhaus. Five bacterial secretion systems have been known for a long time. The type VI system was only discovered a few years ago. Among other things, it transports the protein Hcp through two membranes into the environment – for what purpose is, as yet, unclear. The question of how the export of Hcp is driven was also unanswered. This is precisely what the German-Taiwanese team has now revealed.

Membrane protein TssM: the driver of the protein export

Narberhaus and his colleagues have shown that two proteins in the cell membrane of the bacteria, called TssL and TssM, are responsible for the export of Hcp. The molecule ATP, a cellular energy store, serves as fuel for the transport process. The membrane protein TssM binds the energy supplier ATP, thereby changing its own structure and splitting the ATP. The energy thus released allows the associated membrane protein TssL to bind its cargo (Hcp) so that a tripartite complex of TssM, TssL and Hcp is formed. Hcp only passes from the bacterial cell into the environment when this complex forms.

Successful cooperation between Bochum und Taiwan

“Large membrane proteins such as TssM are difficult to study biochemically. Our colleagues in Taiwan have done a great job” Prof. Narberhaus explains. “It will now be particularly interesting to explore the biological significance of the system.” The analyses of ATP splitting, also called hydrolysis, were established in Prof. Narberhaus’s laboratory by the doctoral student Lay-Sun Ma during a research visit. “Because of the participation in the Collaborative Research Centre SFB 642 ‘GTP- and ATP-dependent membrane processes’, we are able to offer ideal conditions for working with ATP-dependent proteins” the RUB-biologist explains. This is the second time that the DAAD has funded the cooperation between the laboratories of Franz Narberhaus and Erh-Min Lai. The successful cooperation is also to continue in the future. “It is bound to last for many years”, the Bochum researcher is convinced. The next exchange of doctoral students is planned for autumn.

Bibliographic record

L.-S. Ma, F. Narberhaus, E.-M. Lai (2012): IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion, Journal of Biological Chemistry, doi: 10.1074/jbc.M111.301630

Further information

Prof. Dr. Franz Narberhaus, Department of Microbial Biology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-23100

franz.narberhaus@rub.de

Click for more

Microbial biology at the RUB
http://www.ruhr-uni-bochum.de/mikrobiologie/index_en.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://www.ruhr-uni-bochum.de/mikrobiologie/index_en.html

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>