Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify how metabolites target brain-homing immune cells to treat MS

04.03.2019

The discovery could lead to novel, more specific, and more effective MS therapies and a better understanding of how the disease develops

Understanding and mitigating the role of epigenetics (environmental influences that trigger changes in gene expression) in disease development is a major goal of researchers.


Fumaric Acid Ester Metabolites act as a regulator of the micro RNA MIR-21, which is necessary to create the brain-homing T cells that are active in multiple sclerosis.

Credit: Carter Eitreim

Usage Restrictions: Use in conjunction only with this research paper

Now, a newly published paper featured on the March cover of the journal Brain adds significantly to this work by detailing how metabolites can be used to inhibit epigenetic mechanisms and effectively treat a range of diseases, including multiple sclerosis (MS).

Dimethyl fumarate (Tecfidera™)--a cell-permeable metabolite in the family of fumaric acid esters (FAEs)--is an approved treatment for MS and is potentially an effective therapy for other autoimmune diseases. The precise mechanism of the drug's action has been only partially understood, however.

In their new paper, researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York and the Icahn School of Medicine at Mount Sinai take a major step toward unraveling the mystery by identifying a possible mechanism of action for FAEs. In doing so, they also highlight new concepts that may lay the groundwork for the development of novel classes of drugs for the treatment of MS and other diseases.

Scientists believe that MS develops when epigenetic changes cause certain brain-homing immune cells--or T cells--to attack the central nervous system. In their current paper, researchers posited that FAE metabolites work by mitigating the development of certain brain-homing T cells.

"This work has given us extremely useful insight into how we might leverage the metabolic-epigenetic interplay between cells and their environment to create new immune-modulating therapies for diseases like MS," said Patrizia Casaccia, director of the ASRC Neuroscience Initiative and a professor of genetics and neuroscience at Mount Sinai. "It may one day be possible to target and suppress production of the specific brain-homing T cells that play a role in the development of MS."

Methodology

Researchers recruited 97 volunteers with MS that were either treatment-naïve (47), FAE-treated (35), or glatiramer acetate-treated (16). Blood samples were collected from each participant and their levels of brain-homing T cells were measured by looking at the percentages of the chemokine receptors CCR4 and CCR6, which are critical to T cell trafficking between the gut, brain, and skin. The data showed significantly lower levels of these brain-homing T cells in the FAE-treated group than in the other comparison groups.

Researchers subsequently analyzed how FAEs change the epigenetic landscape of T cells to reduce the development of these pathogenic cells. Specifically, they found that FAEs have a strong epigenetic effect on a particular DNA region in T cells that includes a micro RNA called MIR-21, which is necessary to create disease-associated brain-homing T cells. Taken together, the results suggest that the immunomodulatory effect of FAEs in MS is at least in part due to the epigenetic regulation of these specific brain-homing T cells.

Significance

"Our findings about therapeutically active metabolites have implications for the treatment of not only multiple sclerosis but also other autoimmune diseases such as psoriasis and inflammatory bowel disease, which involve the same type of T cells," said Achilles Ntranos, lead author of the paper and a physician and neuroimmunology fellow at Mount Sinai Hospital whose work is supported by the Leon Levy Foundation and the National Institute of Neurological Disorders and Strokes. "Understanding the epigenetic effect of metabolites on the immune system will help us develop several novel strategies for the treatment of autoimmune diseases, which could help patients and physicians achieve better clinical outcomes."

###

Organizational Attribution

Our correct name is the Advanced Science Research Center at The Graduate Center of The City University of New York. For the purpose of space, Advanced Science Research Center, GC/CUNY is acceptable. On second reference, ASRC is correct.

About the Advanced Science Research Center

The ASRC at The Graduate Center elevates scientific research and education at CUNY and beyond through initiatives in five distinctive, but increasingly interconnected disciplines: environmental sciences, nanoscience, neuroscience, photonics, and structural biology. The ASRC promotes a collaborative, interdisciplinary research culture with renowned researchers from each of the initiatives working side by side in the ASRC's core facilities, sharing equipment that is among the most advanced available.

About The Graduate Center of The City University of New York

The Graduate Center of The City University of New York (CUNY) is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students more than 40 doctoral and master's programs of the highest caliber, taught by top faculty from throughout CUNY -- the nation's largest public urban university. Through its nearly 40 centers, institutes, and initiatives, including its Advanced Science Research Center (ASRC), The Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center's extensive public programs make it a home for culture and conversation.

Media Contact

Shawn Rhea
srhea@gc.cuny.edu
212-817-7180

 @asrc_gc

http://asrc.cuny.edu 

Shawn Rhea | EurekAlert!
Further information:
http://dx.doi.org/10.1093/brain.5303708

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>